
Chapter 9

Crack Propagation Analysis with

Automatic Load Balancing

Orion Sky Lawlor

Department of Computer Science, University of Alaska Fairbanks

M. Scot Breitenfeld and Philippe H. Geubelle

Department of Aerospace Engineering, University of Illinois at Urbana-

Champaign

Gengbin Zheng

National Center for Supercomputing Applications, University of Illinois at

Urbana-Champaign

9.1 Introduction . 187
9.1.1 ParFUM Framework . 188
9.1.2 Implementation of the ParFUM Framework 190

9.2 Load Balancing Finite Element Codes in Charm++ 193
9.2.1 Runtime Support for Thread Migration 193
9.2.2 Comparison to Prior Work . 194
9.2.3 Automatic Load Balancing for FEM . 195
9.2.4 Load Balancing Strategies . 196
9.2.5 Agile Load Balancing . 197

9.3 Cohesive and Elasto-plastic Finite Element Model of Fracture . 199
9.3.1 Case Study 1: Elasto-Plastic Wave Propagation 202
9.3.2 Case Study 2: Dynamic Fracture . 206

9.4 Conclusions . 210
9.4 Acknowledgments . 210

9.1 Introduction

Researchers in the field of structural mechanics often turn to the parallel
finite element method to model physical phenomena with finer detail, sophis-
tication and accuracy. While parallel computing can provide large amounts of
computational power, developing parallel software requires substantial effort
to exploit this power efficiently.

187

188 Parallel Science & Eng: The Charm++ Approach

A wide variety of applications involve explicit computations on unstruc-
tured grids. One of the key objectives of this work is to create a flexible frame-
work to perform these types of simulations on parallel computing platforms.
Parallel programming introduces several complications:

• Simply expressing a computation in parallel requires the use of either a
specialized language such as HPF [134] or an additional library such as
MPI.

• Parallel execution makes race conditions and nondeterministic execution
possible. Some languages, such as HPF, have a simple lockstep control
structure and are thus relatively immune to this problem. However, in
other implementations, such as asynchronous MPI or threads, these is-
sues are more common.

• Computation and communication must be overlapped to achieve opti-
mal performance. However, few languages provide good support for this
overlap, and even simple static schemes can be painfully difficult to im-
plement in the general case, such as overlapping computation from one
library with communication from a different library.

• Load imbalance can severely restrict performance, especially for dynamic
applications. Automatic or application-independent load balancing ca-
pabilities are rare (Section 9.2.2).

Our approach to managing the complexity of parallel programming is
based on a simple division of labor. In this approach, parallel programming
specialists in computer science provide a simple but efficient parallel frame-

work for the computation, while application specialists provide the numerics
and physics. The parallel framework described hereafter abstracts away the
details of its parallel implementation.

Since the parallel framework is application independent, it can be reused
across multiple codes. This reuse amortizes the effort and time spent devel-
oping the framework and makes it feasible to invest in sophisticated capabili-
ties such as adaptive computation and communication overlap and automatic
measurement-based load balancing. Overall, this approach has proven quite
effective, leveraging skills in both computer science and engineering to solve
problems neither could solve independently.

9.1.1 ParFUM Framework

ParFUM [144] is a parallel framework for performing explicit computations
on unstructured grids. The framework has been used for finite-element com-
putations, solving partial differential equations, computational fluid dynamics
and other problems.

The basic abstraction provided is very simple—the computational domain

Crack Propagation Analysis with Automatic Load Balancing 189

consists of an irregular mesh of nodes and elements. The elements are di-
vided into partitions or chunks, normally using the graph partitioning library
METIS [72], or ParMETIS [71]. These chunks reside in migratable AMPI vir-
tual processors, thereby taking advantage of runtime optimizations including
dynamic load balancing. The chunks of meshes and AMPI virtual proces-
sors are then distributed across the processors of the parallel machine. There
is typically at least one chunk per processor, but usually many more. Mesh
nodes can be either private, adjacent to the elements of a single partition, or
shared, adjacent to the elements of different partitions.

A ParFUM application has two main subroutines: init and driver. The init
subroutine executes only on processor 0 and is used to read the input mesh
and physical data and register it with the framework. The framework then
partitions the mesh into as many regions as requested, each partition being a
virtual processor. It then executes the driver routine on each virtual processor.
This routine computes the solution over the local partition of the mesh.

The solution loop for most applications involves a calculation in which each
mesh node or element requires data from its neighboring entities. Thus entities
on the boundary of a partition need data from entities on other partitions.
ParFUM provides a flexible and scalable approach to meet an application’s
communication requirements. ParFUM adds local read-only copies of remote
entities to the partition boundary. These read-only copies are referred to as
ghosts. A single collective call to ParFUM allows the user to update all ghost
mesh entities with data from the original copies on neighboring partitions.
This lets application code have effortless access to data from neighboring enti-
ties on other partitions. Since the definition of “neighboring” can vary from one
application to another, ParFUM provides a flexible mechanism for generating
ghost layers. For example, an application might consider two tetrahedra that
share a face as neighbors. In another application, tetrahedra that share edges
might be considered neighbors. ParFUM users can specify the type of ghost
layer required by defining the “neighboring” relationship in the init routine
and adding multiple layers of ghosts according to the neighboring relationship
for applications that require them. In addition, the definition of “neighbor-
ing” can vary for different layers. User-specified ghost layers are automatically
added after partitioning the input mesh provided during the init routine. Par-
FUM also updates the connectivity and adjacency information of a partition’s
entities to reflect the additional layers of ghosts. Thus ParFUM satisfies the
communication needs of a wide range of applications by allowing the user to
add arbitrary ghost layers. After the communication for ghost layers, each
local partition is nearly self-contained; a serial numerics routine can be run
on the partition with only a minor modification to the boundary conditions.

With the above design, the ParFUM framework enables straightforward
conversion of serial codes into parallel applications. For example, in an ex-
plicit structural dynamics computation, each iteration of the time loop has
the following structure:

1. Compute element strains based on nodal displacements.

190 Parallel Science & Eng: The Charm++ Approach

2. Compute element stresses based on element strains.

3. Compute nodal forces based on element stresses.

4. Apply external boundary conditions.

5. Update nodal accelerations, velocities and displacements based on New-
tonian physics.

In a serial code, these operations apply over the entire mesh. However,
since each operation is local, depending only on a node or element’s immediate
neighbors, we can partition the mesh and run the same code on each partition.

The only problem is ensuring that the boundary conditions of the different
partitions match. We might choose to duplicate the nodes along the boundary
and then sum up the nodal forces during step 3, which amounts to the simple
change in step 4 to: Apply external and internal boundary conditions.

For existing codes that have already been parallelized with MPI, the con-
version to ParFUM is even faster, thereby taking advantage of Charm++
features, such as dynamic load balancing.

9.1.2 Implementation of the ParFUM Framework

As shown in the software architecture diagram of Figure 9.1, our paral-
lel FEM framework is written and parallelized using Adaptive MPI. Adaptive
MPI (AMPI) [106, 105] is an MPI implementation and extension based on the
Charm++ [117] programming model. Charm++ is a parallel C++ runtime
system that embodies the concept of processor virtualization [122]. The idea
behind processor virtualization is that the programmer decomposes the com-
putation, without regard to the physical number of processors available, into
a large number of logical work units and data units, which are encapsulated
in virtual processors (VPs) [122]. The programmer leaves the assignment of
VPs to physical processors to the runtime system, which incorporates intelli-
gent optimization strategies and automatic runtime adaptation. These virtual
processors themselves can be programmed using any programming paradigm.
They can be organized as indexed collections of C++ objects that interact via
asynchronous method invocations, as in Charm++ [147]. Alternatively, they
can be MPI virtual processors implemented as user-level, lightweight threads
(not to be confused with system-level threads or Pthreads) that interact with
each other via messages, as in AMPI (illustrated in Figure 9.2).

This idea of processor virtualization brings significant benefits to both par-
allel programming productivity and parallel performance [123]. It empowers
the runtime system to incorporate intelligent optimization strategies and au-
tomatic runtime adaptation. The following is a list of the benefits of processor
virtualization.

Automatic load balancing: AMPI threads (the virtual processors) are
decoupled from real processors. Therefore, they are location independent and

Crack Propagation Analysis with Automatic Load Balancing 191

AMPI

FEM Application

MPI ibverbs UDP ...

Charm++ and Load Balancers

ParFUM Framework

FIGURE 9.1: Software layer diagram for finite element codes in Charm++.

can migrate from processor to processor. Thread migration provides the ba-
sic mechanism for load balancing: if some of the physical processors become
overloaded, the runtime system can migrate a few of their AMPI threads to
underloaded physical processors. The AMPI runtime system provides trans-
parent support of message forwarding after thread migration.

Adaptive overlapping of communication and computation: If one
of the AMPI threads is blocked on a receive, another AMPI thread on the same
physical processor can run. This largely eliminates the need for the program-
mer to manually specify some static computation/communication overlapping,
as is often required in MPI.

Optimized communication library support: Besides the communi-
cation optimization inherited from Charm++, AMPI supports asynchronous
or nonblocking interfaces to collective communication operations. This allows
the overlapping between time-consuming collective operations and other use-
ful computation.

FIGURE 9.2: Implementation of AMPI virtual processors.

192 Parallel Science & Eng: The Charm++ Approach

Better cache performance: A virtual processor handles a smaller set of
data than a physical processor, so a virtual processor will have better memory
locality. This blocking effect is the same method many serial cache optimiza-
tions employ, and AMPI programs get this benefit automatically.

Flexibility to run on an arbitrary number of processors: Since more
than one VP can be executed on one physical processor, AMPI is capable of
running MPI programs on any arbitrary number of processors. This feature
proves to be useful in application development and debugging phases.

In many applications, we have demonstrated that the processor virtual-
ization does not incur much cost in parallel performance [123], due to low
scheduling overheads of user-level threads. In fact, it often improves cache
performance significantly because of its blocking effect.

Charm++ and AMPI have been used as mature parallelization tools
and runtime systems for a variety of real world applications for scalability
[197, 140, 239, 80]. With these successes of improving parallel efficiency, several
domain-specific frameworks on top of Charm++ and AMPI have been devel-
oped to further enhance programmer productivity while automating the par-
allelization process, which produces reusable libraries for parallel algorithms.

Additionally, Charm++ supports several useful features for monitoring
running applications. Converse Client Server (CCS) [113, 47] provides a socket-
based transport layer to get data in and out of any program, and NetFEM
provides a higher level nodes-and-elements interface for remote online visual-
ization, as shown in Figure 9.3.

FIGURE 9.3: Diffraction off a crack, simulated in parallel and rendered
using NetFEM directly from the running simulation (see Color Plate 7).

Crack Propagation Analysis with Automatic Load Balancing 193

9.2 Load Balancing Finite Element Codes in Charm++

Among the challenges associated with the parallelization of finite element
codes, achieving load balance is key to scaling a dynamic application to a large
number of processors. This is especially true for dynamic structural mechanics
codes where simulations involve rapidly evolving geometry and physics, often
resulting in a load imbalance between processors. As a result of this load
imbalance, the application has to run at the speed of the slowest processor with
deteriorated performance. The load imbalance problem has driven decades of
research activities in load balancing techniques [30, 6, 251, 7].

Of interest in this work is dynamic load balancing, which attempts to solve
the load balance problem at runtime according to the most up-to-date load
information. This approach is a challenging software design issue and generally
creates a burden for the application developers, who often must include the
mechanism to inform the decision-making module concerning load balance the
estimated CPU load and the communication structure. In addition, once load
imbalance is detected and data migration is requested, a developer has to write
complicated code for moving data across processors. The ideal load balancing
framework should hide the details of load balancing so that the application
developer can concentrate on modeling the physics of the problem.

In this section, we present an automatic load balancing method and its
application to the three-dimensional finite element simulations of wave propa-
gation and dynamic crack propagation events. The parallelization model used
in this application is the processor virtualization supported by the migrat-
able MPI threads. The application runs on a large number of MPI threads
(that exceeds the actual physical number of processors), allowing to perform
runtime load balancing by migrating MPI threads. The MPI runtime system
automatically collects load information from the execution of the application.
Based on this instrumented load data, the runtime module makes decisions on
migrating MPI threads from heavily loaded processors to underloaded ones.
This approach thus requires minimal efforts from the application developer.

9.2.1 Runtime Support for Thread Migration

In ParFUM applications, load balancing is achieved by migrating AMPI
threads that host mesh partitions from overloaded processors to underloaded
ones. When an AMPI thread migrates between processors, it must move all the
associated data, including its stack and heap-allocated data. The Charm++
runtime supports both fully automated thread migration [253] and flexible
user-controlled migration of data by additional helper functions.

In fully automatic mode, the AMPI runtime system automatically trans-
fers a thread’s stack and heap data which are allocated by a special memory
allocator called an isomalloc [105], in a manner similar to that of PM2 [6]. It

194 Parallel Science & Eng: The Charm++ Approach

is portable on most platforms except for those where the mmap system call is
unavailable. Isomalloc allocates data with a globally unique virtual address,
reserving the same virtual space on all processors. With this mechanism, iso-
malloced data can be moved to a new processor without changing the address.
This provides a clean way to move a thread’s stack and heap data to a new
machine automatically. In this case, migration is transparent to the user code.

Alternatively, users can write their own helper functions to pack and un-
pack heap data for migrating an AMPI thread. This is useful when application
developers wish to have more control in reducing the data volume by using
application specific knowledge and/or by packing only variables that are live
at the time of migration. The PUP (Pack/UnPack) library [113] was written
to simplify this process and reduce the amount of code the developers have to
write. The developers only need to write a single PUP routine to traverse the
data structure and this routine is used for both packing and unpacking.

9.2.2 Comparison to Prior Work

The goal of our work is a generic load balancing framework that optimizes
the load balance of the irregular and highly dynamic applications with an
application independent interface; therefore, we will focus our discussion in
this section to those dynamic load balancing systems for parallel applications.
In particular, we wish to distinguish our research using the following criteria:

• Supporting data migration. Migrating data has advantages over migrat-
ing “heavy-weight” processes, which adds complexity to the runtime
system.

• General Purpose. Load balancing methods are designed to be application
independent. They can be used for a wide variety of applications.

• Communication-aware load balancing. The framework takes communi-
cation into account explicitly, unlike implicit schemes which rely on
domain-specific knowledge. Communication patterns, including multi-
cast relationships and communication volume, are directly recorded into
a load balancing database for load balancing algorithms.

• Automatic load measurement. The load balancing framework does not
rely on the application developer to provide application load informa-
tion, but measures computational costs at runtime.

• Adaptive to execution environment. Takes background load and non-
migratable load into account.

Table 9.1 shows the comparison of the Charm++ load balancing frame-
work to several other software systems that support dynamic load balancing.
DRAMA [16] is designed specifically to support finite element applications.
This specialization enables DRAMA to provide an “application independent”

Crack Propagation Analysis with Automatic Load Balancing 195

System Data General Network Automatic Adaptive

Name Migration Purpose Aware Measurement

DRAMA Yes No No Yes No

Zoltan Yes Yes No No No

PREMA Yes No No No No

Chombo Yes No No No No

Charm++ Yes Yes Yes Yes Yes

TABLE 9.1: Software systems that support dynamic load balancing.

load balancing using its built-in cost functions for the category of applications.
Zoltan [49, 50] does not make assumptions about applications’ data and is de-
signed to be a general purpose load balancing library. However, it relies on
application developers to provide a cost function and communication graph.
The system PREMA [8, 9] supports a very similar idea of migratable objects.
However, its load balancing method primarily focuses on task scheduling prob-
lems as in noniterative applications. The Chombo [40] package has been devel-
oped by Lawrence Berkeley National Lab. It provides a set of tools including
load balancing for implementing finite difference methods for the solution of
partial differential equations on block-structured adaptively refined rectangu-
lar grids. It requires users to provide input for computational workload as a
real number for each box (defined as a partition of mesh). Charm++ provides
the most comprehensive features for load balancing. The measurement-based
load balancing scheme enables automatic adaptation to application behavior.
It is applicable to most scientific and engineering applications where computa-
tional load is persistent, even if it is dynamic. Charm++ load balancing is also
capable of adapting to the change of background load [29] of the execution
environment.

9.2.3 Automatic Load Balancing for FEM

Many modern explicit finite element applications are used to solve highly
unsteady, dynamic, irregular problems. For example, an elasto-plastic solid
mechanics simulator that we explore in Section 9.3 might use a different force
calculation for highly stressed elements undergoing plastic deformation. An-
other simulation might use dynamic geometric mesh refinement to follow dy-
namic shocks [160]. In these applications, load balancing is required to achieve
the desired high performance on large parallel machines.

ParFUM directly utilizes the load balancing framework in Charm++ and
AMPI [251, 20]. The load balancing involves four distinct steps: (1) load eval-
uation; (2) load balancing initiation to determine when to start a new load
balancing process; (3) load balancing decision making and (4) task and data
migration.

The Charm++ load balancing framework adopts a unique measurement-

196 Parallel Science & Eng: The Charm++ Approach

based strategy for load evaluation. This scheme is based on runtime instru-
mentation, which is feasible due to the principle of persistence that can be
found in most physical simulations: the communication patterns between ob-
jects as well as the computational load of each of them tend to persist over
time, even in the case of dynamic applications. This implies that the recent
past behavior of a system can be used as a good predictor of the near future.
The load instrumentation is fully automatic at runtime. During the execu-
tion of a ParFUM application, the runtime measures the computation load
for each object and records communication pattern into a load “database” on
each processor. This approach provides an automatic load balancing solution
that can adapt to application behavior while requiring minimal effort from
the developers.

The runtime then assesses the load database periodically and determines
if load imbalance is present. The load imbalance can be computed as:

σ =
Lmax

Lavg

− 1, (9.1)

where Lmax is the maximum load across all processors, and Lavg is the average
load of all the processors. Note that even when load imbalance occurs (σ > 0),
it may not be profitable to start a new load balancing step due to the overhead
of load balancing itself. In practice, a load imbalance threshold can be chosen
based on a heuristic that the gain of the load balancing (Lmax − Lavg) is at
least greater than the estimated cost of the load balancing (Clb). That is:

σ >
Clb

Lavg

. (9.2)

When load balancing is triggered, the load balancing decision module uses
the load database to compute a new assignment of virtual processors to phys-
ical processors and informs the runtime to execute the migration decision.

9.2.4 Load Balancing Strategies

In the step that makes the load balancing decision, the Charm++ runtime
assigns AMPI threads on physical processors, so as to minimize the maximum
load (makespan) on the processors. This is known as the Makespan minimiza-
tion problem, and the exact solution has been shown to be an NP -hard opti-
mization problem [151]. However, many combinatorial algorithms have been
developed that find a reasonably good approximate solution. Charm++ load
balancing framework provides a spectrum of simple to sophisticated heuristic-
based load balancing algorithms, some of which are described in more detail
below:

• Greedy Strategy: This simple strategy organizes all the objects in de-
creasing order of their computation times. The algorithm repeatedly
selects the heaviest un-assigned object and assigns it to the least loaded

Crack Propagation Analysis with Automatic Load Balancing 197

processor. This algorithm may lead to a large number of migrations.
However, it works effectively in most cases.

• Refinement Strategy: The refinement strategy is an algorithm which im-
proves the load balance by incrementally adjusting the existing object
distribution, especially on highly loaded processors. The computational
cost of this algorithm is low because only a subset of processors is ex-
amined. Furthermore, this algorithm results in only a few objects being
migrated, which makes it suitable for fine-tuning the load balance.

• METIS-based Strategy: This strategy uses the METIS graph partition-
ing library [130] to partition the object-communication graph. The ob-
jective of this strategy is to find a reasonable load balance, while mini-
mizing the communication among processors.

The Charm++ load balancing framework also allows a developer to im-
plement his own load balancing strategies based on heuristics specific to the
target application (such as in the NAMD [197] molecular simulation code).

Load balancing can be done in either centralized or distributed approach
depending on how the load balancing decisions are made. In the centralized ap-
proach, one central processor makes the decisions globally. The load databases
of all processors are collected to the central processor, which may incur high
communication overhead and memory usage for the central processor. In the
distributed approach, load balance decisions are made in a distributed fash-
ion, where load data is only exchanged among neighboring processors. Due to
the lack of the global information and aging of the load data, distributed load
balancing tends to converge slowly to the good load balance discovered by the
centralized approach. Therefore, we typically use a centralized or global load
balancing strategy.

9.2.5 Agile Load Balancing

Applications with rapidly changing load require frequent load balancing,
which demands rapid load balancing with minimal overhead. Normal load
balancing strategies in Charm++ occur in synchronous mode, as shown in
Figure 9.4. At load balancing time, the application on each processor stops
after it finishes its designated iterations and hands control to the load bal-
ancing framework to make load balancing decisions. The application can only
resume when the load balancing step finishes and all AMPI threads migrate
to the destination processors. In practice, this “stop and go” load balancing
scheme is simple to implement, and has one important advantage—thread
migration happens under user control, so that a user can choose a convenient
time for the thread migration, to minimize the implementation complexity
and runtime data size of the migration. However, this scheme is not efficient
due to the effect of the global barrier. It suffers from high overhead due to
the fact that the load balancing process on the central processor has to wait

198 Parallel Science & Eng: The Charm++ Approach

Processor 0

Processor 1

Processor 2

2 3 4

6

1 2

3 4

5 6

i

i i i

i i

i+1 i+1

i+1 i+1

i+1 i+1

5

computing object of i_th iteration1

i

load balancing strategy

1

FIGURE 9.4: Traditional synchronous load balancing.

for the slowest processor to join load balancing, thus wasting CPU cycles on
other processors. This motivated the development of an agile load balancing
strategy that performs asynchronous load balancing which allows overlapping
of load balancing time and normal computation.

The asynchronous load balancing scheme takes full advantage of
Charm++’s intelligent runtime support for concurrent compositionality [123]
that allows dynamic overlapping of the execution of different composed mod-
ules in time and space. In the asynchronous scheme, the load balancing process
occurs concurrently, or in the background of normal computation. When it is
time for load balancing, each processor sends its load database to the central
processor and continues its normal computation without waiting for load bal-
ancing to start. When a migration decision is calculated at the background
on the central processor, the AMPI threads are instructed to migrate to their
new processors in the middle of their computation.

There are a few advantages of asynchronous load balancing over the syn-
chronous scheme. First, eliminating the global barrier helps in reducing the
idle time on faster processors which otherwise would have to wait for the slower
processors to join the load balancing step. Second, it allows the overlapping of
load balancing decision making time and computation in an application, which
potentially could help improve the overall performance. Finally, each thread
can have more flexible control on when to migrate to the designated proces-
sor. For example, a thread can choose to migrate when it is about to be idle,
which potentially allows overlapping of the thread migration and computation
of other threads.

Asynchronous load balancing, however, imposes a significant challenge to
thread migration in the AMPI runtime system. AMPI threads may migrate
at any time, whenever they receive the migration notification. In practice, it
is not trivial for an AMPI thread to migrate at any time due to the complex
runtime state involved, for example when a thread is suspended in the middle
of pending receives. In order to support any-time migration of AMPI threads,
we extended the AMPI runtime to be able to transfer a complete runtime state
associated with the AMPI threads including the pending receive requests and

Crack Propagation Analysis with Automatic Load Balancing 199

buffered messages for future receives. With the help of isomalloc stack and
heap, AMPI threads can be migrated to a new processor transparently at
any time: a thread can actually be suspended on one processor, migrated and
resumed on a different processor in a new address space. For AMPI threads
with pending receives, incoming messages are redirected automatically to the
destination processors by the runtime system.

In the next section, we present a simulation case study to demonstrate the
effectiveness of our finite element framework and load balancing strategies.

9.3 Cohesive and Elasto-plastic Finite Element Model of

Fracture

To simulate the spontaneous initiation and propagation of a crack in a
discretized domain, an explicit cohesive-volumetric finite element (CVFE)
scheme [246], [31], [74] is used. As its name indicates, the scheme relies
on a combination of volumetric elements used to capture the constitutive re-
sponse of the continuum medium, and cohesive interfacial elements to model
the failure process taking place in the vicinity of the advancing crack front.
The CVFE concept is illustrated in Figure 9.5, which presents two 4-node
tetrahedral volumetric elements tied together by a 6-node cohesive element
shown in its deformed configuration, as the adjacent nodes are initially super-
posed and the cohesive element has no volume.

In the present study, the mechanical response of the cohesive elements is
described by the bilinear traction-separation law illustrated in Figure 9.6 for
the case of tensile (Mode I) failure. After an initial stiffening (rising) phase, the

FIGURE 9.5: Two 4-node tetrahedral volumetric elements linked by a 6-
node cohesive element.

200 Parallel Science & Eng: The Charm++ Approach

FIGURE 9.6: Bilinear traction-separation law for mode I failure modeling.
The area under the curve corresponds to the mode I fracture toughness GIc

of the material.

cohesive traction Tn reaches a maximum corresponding to the failure strength
σmax of the material, followed by a downward phase that represents the pro-
gressive failure of the material. Once the critical value ∆nc of the displacement
jump is reached, no more traction is exerted across the cohesive interface and
a traction-free surface (i.e., a crack) is created in the discretized domain. The
emphasis of the dynamic fracture study summarized hereafter is on the sim-
ulation of purely Mode I failure, although cohesive models have also been
proposed for the simulation of mixed-mode fracture events. Also illustrated in
Figure 9.6 is an unloading and reloading path followed by the cohesive traction
during an unloading event taking place while the material fails.

The finite element formulation of the CVFE scheme is derived from the
following form of the principle of virtual work:

∫

V

(ρüi δui + Sij δEij) dV =

∫

ST

T ex
i δui dST +

∫

Sc

Ti δ∆i dSc, (9.3)

where the left-hand side corresponds to the virtual work done by the inertial
forces (ρüi) and the internal stresses (Sij), and the right-hand side denotes
the virtual work associated with the externally applied traction (T ex

i) and
cohesive traction (Ti) acting along their respective surfaces of application ST

and Sc. In Equation (9.3), ρ denotes the material density, ui and Eij are the
displacement and strain fields, respectively, and ∆i denotes the displacement
jump across the cohesive surfaces. The implementation relies on an explicit
time stepping scheme based on the central difference formulation [246]. A
nonlinear kinematics description is used to capture the large deformation and

Crack Propagation Analysis with Automatic Load Balancing 201

rotation associated with the propagation of the crack. The strain measure
used here is the Lagrangian strain tensor E.

To complete the CVFE scheme, we need to model the constitutive response
of the material, i.e., to describe the response of the volumetric elements. In the
present study, we use an explicit elasto-visco-plastic update scheme nonlinear
elasticity, which is compatible with the nonlinear kinematic description and
relies on the multiplicative decomposition of the deformation gradient F into
elastic and plastic parts as

F = FeFp. (9.4)

The update of the plastic component Fp of the deformation gradient at
the (n+ 1)th time step is obtained by

Fp
n+1 = exp

[

∑

A

∆γ
√
2σ̃

(

σA −
Iσ1
3

)

NA ⊗NA

]

• Fp
n, (9.5)

where NA (A=1, 2, 3) denote the Lagrangian axes defined in the initial config-
uration, ∆γ is the discretized plastic strain increment, Iσ1 is the first Cauchy
stress invariant and σ̃ =

√

(σ′ : σ′)/2 is the effective stress, with σ′ denoting
the Cauchy stress deviator whose spectral decomposition is

σ′ =
∑

A

(

σA −
Iσ1
3

)

NA ⊗NA. (9.6)

The plastic strain increment is given by ∆γ = ∆t γ̇, where the plastic
strain rate is described in this study by the classical Perzyna two-parameter
model [196]

γ̇ = η

(

f(σ)

σY

)n

, (9.7)

in which n and η are material constants, σY is the current yield stress and
f(σ) = (σ̃ − σY) is the overstress. Strain hardening is captured by introducing
a tangent modulus Et relating the increment of the yield stress, ∆σY , to the
plastic strain increment, ∆γ. Finally, the linear relation

S = LE (9.8)

between the second Piola-Kirchhoff stresses S and the Lagrangian strains E is
used to describe the elastic response. Assuming material isotropy, the stiffness
tensor L is defined by the Young’s modulus E and Poisson’s ratio ν.

The main source of load imbalance comes from the very different computa-
tional costs associated with the elastic and visco-plastic constitutive updates.
As long as the effective stress remains below a given level (chosen in this
study as 80% of the yield stress), only the elastic relation (9.8) is computed.
Once this threshold is reached for the first time, the visco-plastic update is

202 Parallel Science & Eng: The Charm++ Approach

performed, which typically represents a doubling in the computational cost.
Consequently, as the crack propagates through the discretized domain, the
load associated with each processor can be substantially heterogeneous due to
the plastic zone around the crack tip, thus suggesting the need for a robust
dynamic load balancing scheme as described in Section 9.2.

9.3.1 Case Study 1: Elasto-Plastic Wave Propagation

The first application is the quasi-one-dimensional elasto-plastic wave prop-
agation problem depicted in Figure 9.7. It consists of a rectangular bar of
length L = 10 m and cross-section A = 1 m2. The bar is initially at rest and
stress free. It is fixed at one end and subjected at the other end to an applied
velocity V ramped linearly from 0 to 20 m/s over .16 ms and then held at a
constant velocity of 20 m/s thereafter. The time step size is 3µs and the total
number of time steps is 1,100. The material properties are chosen as follows:
yield stress σY = 480 MPa, stiffness E = 73 GPa and Et = 7.3 GPa, exponent
n = 0.5, fluidity η = 10−6/s, Poisson’s ratio ν = .33 and density ρ = 2800
kg/m3.

The applied velocity generates a one-dimensional stress wave that propa-
gates through the bar and reflects from the fixed end. At every wave reflection,
the stress level in the bar increases as the end of the bar is continuously pulled
at a velocity V . During the initial stage of the dynamic event, the material
response is elastic as the first stress wave travels through the bar at the di-
latational wave speed cd = 6215 m/s with an amplitude

σ = ρcdV = 348MPa < σY . (9.9)

After one reflection of the wave from the fixed end, the stress level in the bar
exceeds the yield stress of the material and the material becomes plastic. A
snapshot of the location of the elasto-plastic stress wave is shown in Figure
9.7. The computational overload associated with the plastic update routine
(approximately a factor of two increase compared to the elastic case) leads
to a significant dynamic load imbalance while the bar transforms from elastic
to plastic. As mentioned earlier, in these simulations, the plastic check and
update subroutine is called upon when the equivalent stress level exceeds 80%
of the yield stress.

The unstructured 800,000-element tetrahedral mesh that spans the bar
is initially partitioned into chunks using METIS, and these chunks are then
mapped to the processors. During the simulation, the processors advance in
lockstep with frequent synchronizing communications required by exchang-
ing of boundary conditions, which may lead to bad performance when load
imbalance occurs.

The simulation was run on Tungsten Xeon Linux cluster at the National
Center for Supercomputing Applications (NCSA). This cluster is based on
Dell PowerEdge 1750 servers, each with two Intel Xeon 3.2 GHz processors,
running Red Hat Linux and Myrinet interconnect network. The test ran on

Crack Propagation Analysis with Automatic Load Balancing 203

FIGURE 9.7: Location of the traveling elasto-plastic wave at time cdt/L =
1.3.

32 processors with 160 AMPI virtual processors. Figure 9.8 shows the results
without load balancing in a CPU utilization graph over a certain time interval.
The figure was generated by Projections [125], a performance visualization and
analysis tool associated with Charm++ that supplies application-level visual
and analytical performance feedback. This utilization graph shows how the
overall utilization changes as the wave propagates through the bar. The total
runtime was 177 seconds for this run.

A separate interest, although not investigated further in this study, is
the period of initial load imbalance (observed for the runtime before 48 s in

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

0 50 100 150

Initial load imbalance

Transient load imbalance

FIGURE 9.8: CPU utilization graph without load balancing (Tungsten
Xeon).

204 Parallel Science & Eng: The Charm++ Approach

Figure 9.8) caused by the quiet generation of subnormal numbers (floating-
point numbers that are very close to zero) during the initial propagation of the
elastic wave along the initially quiescent bar. This phenomenon is discussed
by Lawlor et al. [145], who propose an approach to mitigate such performance
effects caused by the inherent processor design. However, this study is only
concerned with the load imbalance associated with the transformation of the
bar from elastic to plastic (observed for the runtime between 72 s and 100 s
in Figure 9.8).

As indicated earlier, the load imbalance in this problem is highly transient,
as elements at the wave front change from an elastic to a plastic state. In
Figure 9.9, the effects of the plasticity calculations are clearly noticeable in
terms of execution time which linearly ramps from the condition of fully elastic
to fully plastic resulting in a doubling of the execution time. This leads to a
load imbalance, which is resolved by migrating chunks from heavily loaded
processors to light ones while the bar goes into the plastic regime.

Even though we used a variety of methods and time frames, the problem
was not considerably sped up by load balancing. The transition time was too
fast for the load balancer to significantly speed up the simulation. Also the
period of imbalance is a very small portion compared to the total runtime.
Therefore, a performance improvement here necessitates that the overhead
and delays associated with the invocation of the load balancer be minimal.
Nevertheless, we managed to speed up the simulation by 7 seconds as shown in

0

20

40

60

80

100

0 0.5 1 1.5 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
er

ce
n
ta

g
e

o
f

P
la

st
ic

 E
le

m
en

ts

Time,
L

tdc

T
im

estep
’s A

v
erag

e E
x
ecu

tio
n
 T

im
e (sec.)

FIGURE 9.9: Evolution of the number of plastic elements.

Crack Propagation Analysis with Automatic Load Balancing 205

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

0 50 100 150

FIGURE 9.10: CPU utilization graph with synchronous load balancing
(Tungsten Xeon).

Figure 9.10. The time required for completion reduces to 170 seconds, which
yields a 4 percent overall improvement by the load balancing.

We repeated the same test on 32 processors of the SGI Altix (IA64) at
NCSA with the same 160 AMPI virtual processors. Figure 9.11 shows the
result without load balancing in the Projections utilization graph. The total
execution time was 207 seconds and a more severe effect of subnormal numbers
on this machine was observed in the first hundred seconds of execution time.

In the second run, we ran the same test with the greedy load balancing
scheme described in the previous section. The result is shown in Figure 9.12(a)
in the same utilization graph. The load balancing is invoked around time

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

50 100 150 200

FIGURE 9.11: CPU utilization graph without load balancing (SGI Altix).

206 Parallel Science & Eng: The Charm++ Approach

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

50 100 150 200

(a) Synchronous load balancing.

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

50 100 150 200

(b) Asynchronous load balancing.

FIGURE 9.12: CPU utilization graph (SGI Altix).

interval 130 in the figure. After the load balancing, the CPU utilization is
slightly improved and the total execution time is now around 198 seconds.

Finally, we ran the same test with the same greedy algorithm in an asyn-
chronous load balancing scheme described in Section 9.2.5. The asynchronous
load balancing scheme avoids the stall of an application for load balancing
and overlaps the computation with the load balancing and migration. The
result is shown in Figure 9.12(b) in a utilization graph. It can be seen that,
after load balancing, the overall CPU utilization was further improved and
the total execution time is 187 seconds, which is a 20 second improvement.

9.3.2 Case Study 2: Dynamic Fracture

The second application involves a single edge notched fracture specimen
of width W = 5 m, height H = 5 m, thickness T = 1 m and initial crack
length a0 = 1 m, having a weakened plane starting at the crack tip and
extending along the crack plane to the opposite edge of the specimen. The
material properties used in this simulation are σY = 900 MPa, E = 210 GPa,
Et = 2.4 GPa, n = 0.5, η = 10−6/s, ν = .3 and ρ = 7850 kg/m3. The boundary
conditions along the top and bottom surfaces of the specimen have a linearly
ramped velocity of 0.0 to 1.0 m/s over 2.0 ms which is then held at a constant
velocity of 1.0 m/s thereafter. The time step size is .47µs and the total number
of time steps is 1.25e5. A single layer of six-node cohesive elements is placed
along the weakened interface, with the failure properties described by a critical
crack opening displacement value ∆nc = .8 mm and a cohesive failure strength
σmax = 95 MPa. The mesh consists of 91,292 cohesive elements along the
interface plane and 4,198,134 linear strain tetrahedral elements. As the stress
wave emanating from the top and bottom edges of the specimen reaches the
fracture plane, a region of high stress concentration is created around the
initial crack tip. In that region, the equivalent stress exceeds the yield stress
of the material leading to the creation of a plastic zone. As the stress level

Crack Propagation Analysis with Automatic Load Balancing 207

FIGURE 9.13: Snapshot of the plastic zone surrounding the propagating
planar crack at time cdt/a0 = 27. The iso-surfaces denote the extent of the
region where the elements have exceeded the yield stress of the material (see
Color Plate 7).

continues to build up in the vicinity of the crack front, the cohesive tractions
along the fracture plane start to exceed the cohesive failure strength of the
weakened plane and a crack starts to propagate rapidly along the fracture
plane, surrounded by a plastic zone and leaving behind a plastic wake, as
illustrated in Figure 9.13.

This simulation was run on the Turing cluster at the University of Illi-
nois at Urbana-Champaign. The cluster consists of 640 dual Apple G5 nodes
connected with Myrinet network. The simulation without load balancing took
about 12 hours on 100 processors. The evolution of the average processor
utilization is shown in the bottom curve of Figure 9.14. As apparent there,
around time 10,000 seconds, the CPU utilization dropped from around 85% to
only about 44%. This is due to the advent of the elastic elements transitioning
into plastic elements around the crack tip, leading to the beginning of load
imbalance. As shown in Figure 9.15, the number of plastic elements starts
to increase dramatically as the crack starts to propagate along the interface.
As more elastic elements turn plastic, the CPU utilization slowly increases
and stays around 65% (lower curve in Figure 9.14). The load imbalance can
also be easily observed in the CPU utilization graph over processors in Fig-
ure 9.16(a). While some of the processors have CPU utilization as high as
about 90%, some processors only have about 50% of CPU utilization during
the whole execution.

With the greedy load balancing strategy invoked every 500 time steps, the
simulation finished in only about 9.5 hours, a saving of nearly 2.5 hours or 20%
over the same simulation with no load balancing. This increase is caused by the

208 Parallel Science & Eng: The Charm++ Approach

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

0 10000 20000 30000 40000

Utilization with LB

Utilization without LB

FIGURE 9.14: CPU utilization graph with and without load balancing for
the fracture problem shown in Figure 9.13 (Turing Apple Cluster).

P
er

ce
n

ta
g

e
o

f
P

la
st

ic
 E

le
m

en
ts

Time,
L

tdc

P
ercen

tag
e o

f B
ro

k
en

 C
o

h
esiv

e E
lem

en
ts

0

20

40

60

80

100

18 20 22 24 26 28 30

0

20

40

60

80

100

FIGURE 9.15: Evolution of the number of plastic and broken cohesive ele-
ments.

Crack Propagation Analysis with Automatic Load Balancing 209

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Processor

0 10 20 30 40 50 60 70 80 90 100

(a) Without load balancing.

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Processor

0 10 20 30 40 50 60 70 80 90 100

(b) With load balancing.

FIGURE 9.16: CPU utilization across processors (Turing Apple Cluster).

overall increased processor utilization, which can be seen in the upper curve
of Figure 9.14. The peaks correspond to the times when the load balancer is
activated during the simulation. There is an immediate improvement in the
utilization when the load balancer is invoked. Then the performance slowly
deteriorates as more elements become plastic. The next invocation tries to
balance the load again. Figure 9.16(b) further illustrates that load balance
has been improved from Figure 9.16(a) in the view of the CPU utilization

210 Parallel Science & Eng: The Charm++ Approach

across processors. It can be seen that a CPU utilization of around 85% is
achieved on all processors with negligible load variance.

9.4 Conclusions

Dynamic and adaptive parallel load balancing is indispensable for handling
load imbalance that may arise during a parallel simulation due to mesh adap-
tation, material nonlinearity and other modern irregular dynamic simulation
behavior. We have demonstrated the successful application of the Charm++

measurement-based dynamic load balancing concept to a crack propagation
problem, modeled with a cohesive/volumetric finite element scheme. The per-
formance of the application was improved by an agile load balancing strategy
which is designed to handle transient load imbalance due to the rapidly prop-
agating wave. The performance study of this application demonstrated the
ability of the automatic load balancing to achieve sustained high computa-
tional efficiency.

Acknowledgments

This work was an adjunct project affiliated with the Center for Simulation
of Advanced Rockets (CSAR) which was funded by the U.S. Department of
Energy’s Advanced Simulation and Computing program.

