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Simulation of solid rocket motors requires coupling physical models and software tools
from multiple disciplines, and in turn demands advanced techniques to integrate indepen-
dently developed physics solvers e�ectively. In this paper, we overview some computer
science components required for such integration. We package these components into a
software framework that provides system support of high-level data management and per-
formance monitoring, as well as computational services such as novel and robust algorithms
for tracking Lagrangian surface meshes, parallel mesh optimization, and data transfer be-
tween nonmatching meshes. From these reusable framework components we construct
domain-speci�c building blocks to facilitate integration of parallel, multiphysics simula-
tions from high-level speci�cations. Through examples, we demonstrate the �exibility of
our framework and its components.

I. Introduction

Many real-world systems involve complex interactions between multiple physical components. Examples
include natural systems, such as climate models, as well as engineered systems, such as automobile, aircraft,
or rocket engines. Simulation of such systems helps improve our understanding of their function or design, and
potentially leads to substantial savings in time, money, and energy. However, simulation of multicomponent
systems poses signi�cant challenges in the physical disciplines involved, as well as computational mathematics
and software systems.

At the Center for Simulation of Advanced Rockets (CSAR) at the University of Illinois, we have been
developing a software system for detailed simulation of solid rocket motors. A rocket motor is a complex
system of interactions among various parts�propellant, case, insulation, nozzle, igniter, core �ow, etc.�
involving a variety of mechanical, thermal, and chemical processes, materials, and phases. Many issues must
be addressed in developing such a high-performance system, including

• easy-to-use software environment for exploiting parallelism within as well as between components

• reusable parallel software components and high-performance physics modules

• system tools for assessing and tuning performance of individual modules as well as the integrated
system

• management of distributed data objects for inter-module interactions

• parallel computational methods, such as data transfer between disparate, distributed meshes
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In this paper we describe the software framework developed at CSAR for large-scale integrated rocket
simulations. We provide a technical overview of the computational and computer science support for these
rocket simulations, and complements the results on integrated simulation presented at this conference.1,2

While presenting a comprehensive overview of computer science e�orts, we focus mostly on our most recent
developments on surface propagation and the high-level orchestration framework.

The remainder of the paper is organized as follows. Section II brie�y overviews the Rocstar software
system developed at CSAR. Section III presents our novel integration framework for multicomponent systems
and some middleware services built upon it. Section IV describes a few key computational problems arising
from the integration of such systems and our solutions to them. Section V describes the new high-level
orchestration framework for the integrated rocket simulations, and Section VI concludes the paper with a
discussion of some remaining challenges.

II. System Overview

Rocstar is our high-performance, integrated software system for detailed, whole-system simulation of
solid rocket motors, currently under development at CSAR. We brie�y overview the methodology and the
software components of this system.

A. Coupling Methodology

Simulation of a rocket motor involves many disciplines, including three broad physical disciplines��uid
dynamics, solid mechanics, and combustion�that interact with each other at the primary system level, with
additional subsystem level interactions, such as particles and turbulence within �uids. Because of its complex
and cross-disciplinary nature, the development of Rocstar has been intrinsically demanding, requiring diverse
backgrounds within the research team. In addition, the capabilities required from the individual physical
disciplines are at the frontier of their respective research agendas, which entails rapid and independent
evolution of their software implementations.

To accommodate the diverse and dynamically changing needs of individual physics disciplines, we have
adopted a partitioned approach, to enable coupling of individual software components that solve problems
in their own physical and geometrical domains. With this approach, the physical components of the system
are naturally mapped onto various software components (or modules), which can then be developed and
parallelized independently. These modules are then integrated into a coherent system through an integration
framework, which, among other responsibilities, manages the distributed data objects, and performs inter-
module communications on parallel machines.

B. System Components

To enable parallel simulations of rockets, we have developed a large number of software modules. Figure 1
shows an overview of the components of the current generation of Rocstar. These modules serve very diverse
purposes and have diverse needs in their development and integration. We loosely group these modules into
the following four categories.

Figure 1. Overview of Rocstar software components.
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Physics modules solve physical problems in their respective geometric domains. In general, they are
similar to stand-alone applications, are typically written in Fortran 90, and use array based data structures
encapsulated in derived data types.

Service modules provide speci�c service utilities, such as I/O, communication, and data transfer. They
are typically developed by computer scientists but driven by the needs of applications, and are usually written
in C++.

Integration interface provides data management and function invocation mechanisms for inter-module
interactions.

Control (orchestration) modules specify overall coupling schemes. They contain high-level, domain-
speci�c constructs built on top of service modules, provide callback routines for physics modules to obtain
boundary conditions, and mediate the initialization, execution, �nalization, and I/O for physics and service
modules through the integration interface.

In Rocstar, the above categories correspond to the components at the lower-left, right, center, and top,
respectively, of Figure 1. In the following sections, we describe various parallel aspects associated with these
modules. In addition, our system uses some o�-line tools, such as those in the upper-left corner of Figure 1,
which provide speci�c pre- or post-processing utilities for physics modules.

III. Integration Framework and Middleware Services

To accommodate rapidly changing requirements of physics modules, we have developed a software frame-
work that allows the individual components to be developed as independently as possible and integrated
subsequently with little or no changes. It provides maximum �exibility for physics codes and can be adapted
to �t the diverse needs of the components, instead of requiring the opposite. This framework is di�erent
from many traditional software architectures and frameworks, which typically assume that the framework is
fully in control, and are designed for extension instead of integration.

A. Management of Distributed Objects

To facilitate interactions between modules, we have developed an object-oriented, data-centric integration
framework called Roccom. Its design is based on an important observation and assumption of persistent
objects. An object is said to be persistent if it lasts beyond a major coupled simulation step. In a typical
physics module, especially in the high-performance regime, data objects are allocated during an initialization
stage, reused for multiple iterations of calculations, and deallocated during a �nalization stage. Therefore,
most objects are naturally persistent in multipcomponent simulations.

Based on the assumption of persistence, Roccom de�nes a registration mechanism for data objects and
organizes data into distributed objects called windows. A window encapsulates a number of data attributes,
such as the mesh (coordinates and connectivities) and some associated �eld variables. A window can be
partitioned into multiple panes for exploiting parallelism or for distinguishing di�erent material or boundary-
condition types. In a parallel setting, a pane belongs to a single process, while a process may own any number
of panes. A module constructs windows at runtime by creating attributes and registering their addresses.
Di�erent modules can communicate with each other only through windows, as illustrated in Figure 2.

Figure 2. Schematic of windows and panes.

Roccom also introduces the novel concept of partial inheritance of windows to construct a sub-window
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by using or cloning a subset of the mesh or attributes of another window. In addition, the registered
attributes in Roccom can be referenced as an aggregate, such as using �mesh� to refer to the collection of
nodal coordinates and element connectivity. These advanced features enable performing complex tasks, such
as reading or writing data for a whole window, with only one or two function calls.3

On top of Roccom, we have developed a number of reusable service modules, including middleware
services, such as communication and performance tools, which we describe in the following subsections, as
well as mathematical services, which we discuss in the next section.

B. Interpane Communication

Traditional message-passing paradigms typically provide general but low-level inter-process communications,
such as send, receive, and broadcast. In physical simulations using �nite element or �nite volume methods,
communications are typically across panes or partitions, whether the panes or partitions are on the same
or di�erent processes. The Roccom framework provides high-level inter-pane communication abstractions,
including performing reductions (such as sum, max, and min operations) on shared nodes, and updating
values for ghost (i.e., locally cached copies of remote values of) nodes or elements. Communication patterns
between these nodes and elements are encapsulated in the pane connectivity of a window, which can be
provided by application modules or constructed automatically in parallel using geometric algorithms. These
inter-pane communication abstractions simplify parallelization of a large number of modules, including sur-
face propagation and mesh smoothing, which we will discuss in the next section.

C. Performance Monitoring

There is a wide variety of tools for the collection and analysis of performance data for parallel applications.
However, the use of external tools for performance tuning is too laborious a process for many applications,
especially for a complex integrated system such as Rocstar. Many tools are not available on all the platforms
for which we wish to collect data, and using a disparate collection of tools introduces complications as well.
To obviate the need for external tools, we have extended the Roccom framework's �service-based� design
philosophy with the development of a performance-pro�ling module, Rocprof.

Rocprof provides two modes of pro�ling: module-level pro�ling and submodule-level pro�ling. The
module-level pro�ling is fully automatic, embedded in Roccom's function invocation mechanism, and hence
requires no user intervention. For submodule-level pro�ling, Rocprof o�ers pro�ling services through the
standard MPI_Pcontrol interface, as well as a native interface for non-MPI based codes. By utilizing the
MPI_Pcontrol interface, applications developers can collect pro�ling information for arbitrary, user-de�ned
sections of source code without breaking their stand-alone codes. Internally, Rocprof uses PAPI4 or HPM
(http://www.alphaworks.ibm.com/tech/hpmtoolkit) to collect hardware performance statistics.

IV. Parallel Computational Methods

In Rocstar, a physical domain is decomposed into a volume mesh, which can be either block-structured
or unstructured, and the numerical discretization is based on either a �nite element or �nite volume method.
The interface between �uid and solid moves due to both chemical burning and mechanical deformation. In
such a context, we must address a large number of mathematical issues, three of which we discuss here.

A. Surface Propagation

In Rocstar, the interface must be tracked as it regresses due to burning. In recent years, Eulerian methods,
especially level set methods, have made signi�cant advancements and become the dominant methods for
moving interfaces.5,6 In our context, Lagrangian representation of the interface is crucial to describe the
boundary of volume meshes of physical regions. However, preexisting numerical methods, either Eulerian
or Lagrangian, have di�culties in capturing the evolving singularities (such as ridges and corners) in solid
rocket motors.

To meet this challenge, we have developed a novel method, called face-o�setting methods,7 based on a
new entropy-satisfying Lagrangian formulation. Our face-o�setting methods deliver an accurate and stable
entropy-satisfying solution without requiring Eulerian volume meshes. A fundamental di�erence between
face-o�setting and traditional Lagrangian methods is that our methods solve the Lagrangian formulation
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face by face, and then reconstruct vertices by constrained minimization and curvature-aware averaging,
instead of directly moving vertices along some approximate normal directions. This method allows part
of the surface to be �xed or to be constrained to move along certain directions (such as constraining the
propellant to burn along the case). It supports both structured and unstructured meshes, with an integrated
node redistribution scheme that su�ces to control mesh quality for moderately moving interfaces. Figure 3
shows the propagation of a block-structured surface mesh for the �uids domain of the Attitude Control
Motor (ACM) rocket, where the front and aft ends burn along the cylindrical case.

Figure 3. Simulation of burning of Attitude Control Motor along the case with block-structured meshes
using face o�setting. Left sub�gure shows initial geometry; middle and right sub�gures show meshes of initial
geometry and after 30% burn, respectively. Colors indicate magnitude of total displacements of vertices.

When coupled with mesh adaptation, the face-o�setting method can capture signi�cant burns. Figure 4
shows a sample result of the burning of a star grain section of a rocket motor using the face o�setting method
coupled with surface remeshing using MeshSim from Simmetrix (http://www.simmetrix.com). The interior
(the �ns) of the propellant burns at uniform speed and exhibits rapid expansion at slots and contraction at
�ns. The �n tips transform into sharp ridges during propagation, as captured by the face o�setting method.

Figure 4. Simulation of uniform burning of section of star grain of solid rocket using face o�setting and mesh
repair. Green curves indicate ridges in evolving geometry.

B. Mesh Optimization

In Rocstar, each physics module operates on some type of mesh. An outstanding issue in integrated rocket
simulations is the degradation of mesh quality due to the changing geometry resulting from consumption of
propellant by burning, which causes the solid region to shrink and the �uid region to expand, and compresses
or in�ates their respective meshes. This degradation can lead to excessively small time steps when an element
becomes poorly shaped, or even outright failure when an element becomes inverted. Some simple mesh
motion algorithms are built into our physics modules. For example, simple Laplacian smoothing is used for
unstructured meshes, and a combination of linear trans�nite interpolation (TFI)8 with Laplacian smoothing
is used for structured meshes in Roc�o. These simple schemes are insu�cient when the meshes undergo
major deformation or distortion. To address this issue, we take a three-tiered approach, in increasing order
of aggressiveness: mesh smoothing, mesh repair, and global remeshing.

Mesh smoothing copes with gradual changes in the mesh. We provide a combination of in-house tools
and integration of external packages. Our in-house e�ort focuses on parallel, feature-aware surface mesh

5 of 9

American Institute of Aeronautics and Astronautics Paper 2005-3991



optimization, and provides novel parallel algorithms for mixed meshes with both triangles and quadrilaterals.
To smooth volume meshes, we utilize the serial MESQUITE package9 from Sandia National Laboratories,
which also works for mixed meshes, and we parallelized it by leveraging our across-pane communication
abstractions.

If the mesh deforms more substantially, then mesh smoothing becomes inadequate and more aggressive
mesh repair or even global remeshing may be required, although the latter is too expensive to perform very
frequently. For these more drastic measures, we currently focus on only tetrahedral meshes, and leverage
third-party tools o�-line, including Yams and TetMesh from Simulog and MeshSim from Simmetrix, but we
have work in progress to integrate MeshSim into our framework for on-line use. Remeshing requires that
data be mapped from the old mesh onto the new mesh, for which we have developed parallel algorithms to
transfer both node- and cell-centered data accurately, built on top of the parallel collision detection package
developed by Lawlor and Kalé.10 Figure 5 shows an example where the deformed star grain is remeshed
with the temperature �eld of the �uids volume transferred from the old to the new mesh.

Figure 5. Example of remeshing and data transfer of deformed star grain.

C. Intermodule Data Transfer

In multiphysics simulations, the computational domains for each physical component are frequently meshed
independently, which in turn requires geometric algorithms to correlate the surface meshes at the common
interface between each pair of interacting domains to exchange boundary conditions. These surface meshes
in general di�er both geometrically and combinatorially, and are also partitioned di�erently for parallel
computation. To correlate such interface meshes, we have developed novel algorithms to constructs a com-
mon re�nement of two triangular or quadrilateral meshes modeling the same surface, that is, a �ner mesh
whose polygons subdivide the polygons of the input surface meshes.11 To resolve geometric mismatch, the
algorithm de�nes a conforming homeomorphism and utilizes locality and duality to achieve optimal linear
time complexity. Due to the nonlinear nature of the problem, our algorithm uses �oating-point arithmetic,
but nevertheless achieves provable robustness by identifying a set of consistency rules and an intersection
principle to resolve any inconsistencies due to numerical errors.

After constructing the common re�nement, we must transfer data between the nonmatching meshes in
a numerically accurate and physically conservative manner. Traditional methods, including pointwise inter-
polation and some weighted residual methods, can achieve either accuracy or conservation, but none could
achieve both simultaneously. Leveraging the common re�nement, we developed more advanced formula-
tions and optimal discretizations that minimize errors in a certain norm while achieving strict conservation,
yielding signi�cant advantages over traditional methods, especially for repeated transfers in multiphysics
simulations.12 For parallel runs, the common re�nement also contains the correlation of elements across
partitions of di�erent meshes, and hence provides the communication structure needed for inter-module,
inter-process data exchange.

V. Orchestration Framework

Coupled rocket simulations involve interactions of physics modules including �uids, solids, and com-
bustion. These individual physics modules may need to proceed at their respective time steps, while the
boundary (or jump) conditions must be exchanged periodically among them to conduct a coherent simu-
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lation. The numerical coupling algorithms for these simulations frequently also require customization to
accommodate needs of di�erent applications.

These coupled simulations pose a number of challenges and complexities in orchestrating the interactions
among physics modules. First, the orchestration module must provide a �exible and easy construction of
complex coupling algorithms and provide readability of the orchestration module, so that an end-developer
can experiment with novel coupling algorithms easily. Second, the data transfer between physics modules may
impose certain causality constraints and also may require bu�er data for manipulating the jump conditions.
This in turn requires sophisticated task and bu�er management of the orchestration module. Finally, the
orchestration module must provide a simple interface for the numerical and geometrical services utilities,
including mesh modi�cation, intermodule data transfer, and surface propagation.

To meet these challenges, we have developed Rocman � the control and orchestration module to coor-
dinate multiple physics modules in coupled simulations and provide facilities to extend and implement new
coupling schemes. It is the front-end of the coupled code that directly interacts with end-developers of cou-
pled simulations. Rocman is a high-level infrastructure, built on top of the Roccom integration framework.
With a novel design using the idea of action-centric speci�cation and automatic scheduling of reusable ac-
tions to describe the intermodule interactions, Rocman facilitates the diverse needs of di�erent applications
and coupling schemes in an easy-to-use fashion.

A. Rocman Components

Rocman contains �ve types of key components: top-level iterations, agents for physics modules, actions,
schedulers, and coupling schemes.

• One of the major tasks of Rocman is to drive the simulation. For this purpose, it provides top-level
iterations including time-marching schemes for both steady and unsteady-state calculations. In the
driver code, Rocman invokes time integration of the coupling scheme by passing in the current time
and obtaining a new time, until the system reaches a designated time or a converged state.

• An agent serves a physics module. It represents a domain-speci�c simulation (�uid, solid, or com-
bustion) in a coupling scheme. The most basic task of an agent is to initialize the physics module
and manage its persistent bu�er data for use during intermodule interactions on behalf of the physics
module.

• Interactions between physics modules are encapsulated in actions. An action is a functional object
implementing a designated calculation. An action also de�nes the input data, on which it operates and
the output data produced by the calculation.

• A scheduler is a container of actions, and is responsible for determining the orders of initialization,
execution, and �nalization of its actions. A scheduler provides a procedure add_action() to its user for
registering actions. After all the actions have been registered with a scheduler, the scheduler can then
automatically schedule these actions based on the data �ow among actions. The automatic scheduling
constructs a call graph, which is a directed acyclic graph (DAG) for the actions, in which each edge
between a pair of actions is identi�ed by the data passing from one action to the other. This automatic
scheduling of actions greatly simpli�es the work of an end-developer, who now needs to be concerned
about only the data movement among actions without having to worry about the order of its execution.
Furthermore, constructing a call graph of actions exposes parallelism among actions and potentially
enables concurrent execution of all independent actions that have their input data ready. In the future,
we plan to extend the run-time scheduling to allow concurrent execution of actions.

• A coupling scheme is composed of a number of agents and a scheduler. The scheduler determines
the orders that must be followed for invoking initialization, execution, and �nalization of agents and
actions. The coupling scheme is the only code an end-developer of a new coupling scheme needs to
write. Rocman provides a rich set of prede�ned basic actions, which can then be used as building
blocks for new coupling schemes.
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B. Coupling Scheme Visualization

Understanding and debugging a complex coupling scheme poses a great challenge for a user when a variety
of schedulers and actions are involved. Rocman provides a visualization tool that displays the data �ow of
actions to help users comprehend and debug coupling schemes. When a coupling scheme is constructed,
an output �le is generated that describes the coupling scheme and its schedulers and actions in the Graph
Description Language (GDL). The output �le can then be visualized by tools such as AiSee.13

Figure 6. Illustration of simpli�ed time stepping scheme for �uid-solid interaction.

As a concrete example, Figure 6 illustrates a simpli�ed �uid and solid coupling scheme with subcycling
of individual physics modules. In a �system time step�, the tractions are �rst transferred from the �uids
interface mesh onto the solids interface mesh (step 1), and a �nite-element analysis of elasticity is then
performed to compute the displacements of the interface (step 2). During the process, the solids module
may perform multiple smaller time steps based on its stability limit, and obtain jump conditions (tractions)
from Rocman, which performs interpolation in time. After the solids module reaches the designated system
time step, Rocman transfers the displacements of the interface (step 3). The �uids module then solves for
tractions by obtaining mesh motion and solids velocity as boundary conditions (step 4).

Figure 7 shows the visualization of this simpli�ed coupling scheme. In the graph, each node represents
an action or a scheduler (a container of actions), corresponding to the steps in the above description of
the coupling scheme. Each edge represents the execution order of actions and is labeled with data passed
between actions. This �gure was generated automatically using the GDL output of Rocman, except for the
circled numbers which were added manually. A scheduler node can be unfolded in AiSee graph viewer to
reveal the details of the actions that the scheduler contains. This visualization capability helps development
of new coupling schemes by allowing them to be debugged visually at a high level.

VI. Conclusion

In this paper, we provided an overview of some software and algorithmic issues in developing high-
performance simulation tools for multicomponent systems. We described the data management, middleware
services, and some computational tools, with focus on recent developments of surface propagation and
high-level orchestration module. We presented examples of individual computational modules and the or-
chestration module to demonstrate the functionality and �exibility of the framework. Examples of coupled
physical simulations can be found in companion papers.1,2 While substantial progress has been made, many
challenges remain, such as parallel mesh repair and adaptation.
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Figure 7. Sample visualization of �uid-solid coupling scheme using aiSee.
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