
Interactive Volume Rendering Aurora on the GPU

Orion Sky Lawlor∗ Jon Genetti†

Department of Computer Science, University of Alaska Fairbanks

Figure 1: Our rendered aurora, 60km above Finland.

ABSTRACT
We present a combination of techniques to render the
aurora borealis in real time on a modern graphics pro-
cessing unit (GPU). Unlike the general 3D volume ren-
dering problem, an auroral display is emissive and can
be factored into a height-dependent energy deposition
function, and a 2D electron flux map. We also present
a GPU-friendly atmosphere model, which includes an
integrable analytic approximation of the atmosphere’s
density along a ray. Together, these techniques enable
a modern consumer graphics card to realistically render
the aurora at 20–80fps, from any point of view either
inside or outside the atmosphere.
Keywords: Volume rendering, aurora borealis, atmo-
spheric scattering.

1 THE AURORA
The aurora borealis and aurora australis are beautiful
phenomena that have fascinated viewers in Earth’s po-
lar regions for centuries. Aurora are generated when
charged particles trapped by a planet’s magnetic field
collide with and excite gas in the upper atmosphere.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG 2011, ISBN 1213-6972
WSCG’2011, H41, 2011
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

∗e-mail:lawlor@alaska.edu
†e-mail:jdgenetti@alaska.edu

Figure 2: Global progress of a typical auroral substorm.

On Earth, these charged particles rarely penetrate be-
low 50 kilometers altitude, and the aurora become dif-
ficult to discern above 500 kilometers due to the thin
atmosphere.

The charged particle fluxes visible as auroral displays
are driven by magnetohydrodynamics that are complex
and the details are poorly understood, but the effects can
be qualitatively described. As is typical in magnetohy-
drodynamics, magnetic effects expel currents from the
body of a conductive plasma, compressing the charged
particle currents flowing through the magnetosphere
into thin sheets around one kilometer thick. As these
current sheets are bent along magnetic field lines and
intersect the atmosphere, they become visible as auro-
ral “curtains," long linear stripe-like features. Depend-
ing on the activity level of the aurora, curtains can be
nearly featureless greenish blur, or an extremely com-
plex and jagged path.

A typical “auroral substorm” [Aka64] begins with
simple, smooth curtains. These then grow and be-
gin to fold over during substorm onset, resulting in
many overlapping and interacting curtains, which be-
come more and more complex and fragmentary as the
substorm breaks up, and finally substorm recovery gives
dim pulsating aurora. Recent work by Nishimura et
al. [Nis10] has linked ground observations of pulsating
aurora to space-based observations of electromagnetic
waves deep in Earth’s magnetotail, using the THEMIS
satellites.

Because the detailed interactions of the charged par-
ticles and magnetic fields that drive auroral substorms
are poorly understood, for rendering purposes we ap-
proximate their effect. We represent an auroral curtain’s
path using a time-dependant 2D spline curve “foot-
print,” which are animated by hand to match the broad
global outlines of an auroral substorm as it moves over
the surface of the planet as shown in Figure 2.

1.1 Algorithm Overview
In this paper, we present a combination of techniques
to interactively render the aurora on modern graphics
hardware. To summarize our interactive GPU rendering
algorithm:

1. We begin with aurora curtain footprints, described
in Section 2, stored as 2D splines curving along the
planet’s surface.

2. We add 2D complexity to those curtain footprints
by wrapping a long thin fluid dynamics simulation
along them as described in Section 2.

3. We preprocess the curtain footprints into a 2D dis-
tance field described in Section 3.2, and stored in
another GPU 2D texture and used to accelerate ren-
dering.

4. We stretch the curtains into 3D using an atmospheric
electron deposition function, as described in Sec-
tion 2.1. The deposition function is expensive and
constant, so it is stored as a GPU texture lookup ta-
ble.

5. For each frame, we shoot rays from the camera
through each pixel onscreen. Any camera model
may be used.

6. For each ray, we determine the portion of the ray
that intersects the aurora layer and atmosphere, and
determine the layer compositing order as described
in Section 3.1.

7. To intersect a ray with an aurora layer, we step along
the ray at conservative distances read from the dis-
tance field, as described in Section 3.2. At each 3D
sample point, we sum up the auroral emission as the
product of the 2D curtain footprint and the vertical
deposition function.

8. To intersect a ray with the lower atmosphere, we
evaluate a closed-form airmass approximation as de-
scribed in Appendix A.

9. Final displayed pixels are produced by compositing
together the resulting aurora, atmosphere, and planet
colors followed by an sRGB gamma correction, as
described in Section 3.3.

Section 4 describes the performance of our algorithm
on various graphics hardware.

2 MODELING THE AURORA IN 3D
Because curtains become fragmented and complex dur-
ing the highly excited periods of an auroral substorm,
splines alone do not convey the complexity of real cur-
tains, as illustrated in Figures 3 and 4. Several ap-
proaches have been used to simulate this complexity,

Figure 3: Photograph of auroral curtains during a mod-
erate substorm. The shutter was open for four seconds.

Figure 4: High-speed video of a portion of a very active
curtain. Field of view is 4km wide.

Figure 5: Portions of the 2D fluid dynamics simulations
we use to model small-scale curtain complexity, and the
resulting 3D auroral curtains.

such as raycasting caustics, but we find the phenomena
are better matched by a fluid dynamics simulation.

To simulate aurora curtain footprint complexity, we
use an simple 2D Stam-type [Sta99] fluid advection
simulator. We use a multigrid divergence correction
approach for the Poisson step, which is both asymp-
totically faster than an FFT or conjugate gradient ap-
proach, and makes the simulator amenable to a graph-
ics hardware implementation. The simulator is solving
a Kelvin-Helmholtz instability problem, with the fluid
shear zone lying along the flux center of the auroral cur-
tain, as illustrated in Figure 5. We perform the simula-

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 80 100 120 140 160 180 200

R
e

la
ti
v
e

 C
o

n
c
e

n
tr

a
ti
o

n

Altitude in Atmosphere (km)

Temperature, relative to 1000°K
Total Shielding Mass M(z)

Density D(z)
Nitrogen

Atomic Oxygen

Figure 6: MSIS atmosphere as a function of altitude.

tion in a long vertical domain with periodic boundary
conditions, so we could replicate the same simulation
along an arbitrarily long spline. The resulting simu-
lated auroral curtain is stretched along the spline that
defines the center line of the curtain. For quiet early pe-
riods during the substorm, we use the initial steps of the
simulation, before substantial turbulence has distorted
the smooth initial conditions; later more chaotic cur-
tains are represented using later steps in the simulation,
when the simulation’s fluid turbulence results in a very
complex electron flux pattern. The magnetosphere’s ac-
tual plasma dynamics are of course very different from
simple Navier-Stokes fluids, but this simulation seems
to approximate the final turbulent appearance of the au-
rora reasonably well.

2.1 Aurora Vertical Deposition
We use splines to impose the global location of the au-
roral curtains, and fluid dynamics to approximate the
small-scale variations in brightness, but both of these
give only an electron flux footprint on the surface of
the planet, in 2D. To create a full 3D volume model of
the aurora, we must specify how the electrons are de-
posited through the atmosphere, via an electron deposi-
tion function.

The depth that charged particles penetrate the atmo-
sphere depends on both the velocity of the charged par-
ticles and the atmosphere’s state. However, the state
of the upper atmosphere is not constant, due to variable
energy input from solar radiation, ground-based upward
travelling radiation, and even variable auroral energy
deposition itself. Since the auroral energy deposition
profile depends on a variety of factors, including feed-
back due to auroral heating, an exact deposition model
would require us to simulate the spatial and temporal
variations in the upper atmosphere’s density, tempera-
ture, and chemistry. Software exists to do this, such as
NCAR’s thermospheric general circulation model, but
it is not amenable to either the GPU or to realtime inter-
active simulation. Instead, we begin with the standard
MSIS-E-90 atmosphere [Hed91], as shown in Figure 6.

 0.001

 0.01

 0.1

 1

 80 100 120 140 160 180 200

R
e

la
ti
v
e

 E
n

e
rg

y
 D

e
p

o
s
it
io

n
 R

a
te

Altitude in Atmosphere (km)

Summed
E=20 KeV
E=10 KeV

E=5 KeV
E=2 KeV
E=1 KeV

Figure 7: Auroral energy as a function of altitude.

We then apply the Lazarev charged particle energy
deposition model [Lum92], which is still the definitive
model for low-energy auroral electrons [Fan08]. The
inputs to the Lazarev model are the particle energy E
and the atmosphere’s mass Mz and density Dz at the
desired height z, and the output is the auroral energy
deposition rate Az:

E Initial energy of incoming particles, in thousands
of electron-volts [keV]. For aurora, this is 1–30keV
[Fan08]. These equations work well below 32keV.

z Altitude above surface to evaluate deposition.

Dz Atmosphere’s density at altitude z [g/cm3]. This is
listed directly in the MSIS data.

Mz =
∫

∞

z Dz′dz′ Atmosphere’s total shielding mass above
altitude z [g/cm2].

ME = 4.6×10−6 E1.65 Characteristic shielding mass for
particles of energy E [g/cm2]

r = Mz/ME Relative penetration depth [unitless]

L = 4.2r e−r2−r +0.48e−17.4r1.37
Lazarev’s unscaled in-

teraction rate [unitless]

Az = L E (Dz/ME) Aurora energy deposition rate at al-
titude z.

The result of the Lazarev deposition model is shown
in Figure 7 for several discrete input energies, as well
as a sum over energies from 1keV to 20keV. Vari-
ous parameterizations of this deposition function exist,
such as the popular Thermospheric General Circulation
Model [Rob87], which assumes a Maxwellian distri-
bution of electron energies. TGCM is actually simple
enough to evaluate per pixel at runtime, as we explore in
Section 4. However, both the Lazarev or TGCM mod-
els need an atmosphere model as input, and the ther-
mosphere’s density profile Dz is complex, as shown in
Figure 6. Since we will need a lookup table to store
the atmosphere’s shielding mass and density, we sim-
ply pre-evaluate the deposition function for various en-
ergies and store the result in a table.

2.2 Prior Work in Aurora Modeling
We extend the excellent and rigorous aurora rendering
work of Baranoski et al. [Bar00] in several ways. First,
this prior work forward maps aurora curtain points on-
screen followed by a guassian blur, while our renderer
walks backward along camera rays accumulating visi-
ble energy. Our raytracing approach allows us to ren-
der to arbitrary resolutions and produce sharp rendered
images. Second, we provide an interactive GPU imple-
mentation which includes the effect of the lower atmo-
sphere on the aurora and allows us to render the aurora
from any point inside or outside the atmosphere. In the
prior work, electron-atmosphere impacts are simulated
explicitly, while we simply look up their well known
altitude dependent statistical energy deposition func-
tion. Finally, the prior work’s curtains are constructed
from a combination of sine wave with phase shift os-
cillations and a caustic-type electron beam deflection
model; while our curtains begin as splines, with smaller
turbulent deflections applied via a fluid dynamics sim-
ulation.

The later work of Baronoski et al. [Bar05] presents a
detailed physically plausible model of the magnetohy-
drodynamics of a charge sheet’s path through the mag-
netosphere prior to becoming visible as an auroral cur-
tain. There appears to be an almost exact analogy be-
tween this work and our fluid dynamics simulation of
curtain dynamics: electric charges with inertia interact
via an electrostatic field, while fluid parcels with iner-
tia interact via a pressure field. Both electrodynamic
and fluid dynamic simulations use a multigrid Poisson
solver to control field divergence, and the results ap-
pear roughly similar as well. One difference is we have
not yet attempted to specialize our initial conditions to
generate the spiral structures visible as auroral surges.

3 GPU RAYTRACING THE AURORA
Raytracing is a rendering technique that finds a scene’s
color along a ray by intersecting the ray with the scene
geometry. Raytracing is computationally demanding,
and the first interactive raytracers used a combination of
carefully constructed scenes (such as a set of spheres)
and massive parallel computing horsepower. Univer-
sity of Utah researchers [Par98] used a large shared-
memory machine for this, while John Stone’s Tachyon
[Sto98] used a network of distributed-memory work-
stations. GPU raytracing is such a natural fit that ini-
tial work in this area [Pur02] actually preceded fully
programmable GPU hardware, and an abundance of
modern work exists. Similarly, volume rendering via
raytracing is a venerable and well known technique
[Kaj84].

3.1 Aurora rendering geometry
The aurora are almost perfectly emissive phenomena,
since the degree of absorption and scattering by the at-

mosphere is vanishingly small around 100km altitude.
Even at sea level air’s optical properties are reasonably
close to that of vacuum, and at 100km altitude the air’s
density is a millionfold smaller. The isotropic emis-
sions, and lack of absorption and scattering, simplifies
Kajiya’s rendering equation [Kaj84] for the aurora layer
into a single integral along the path of the ray.

Since aurora only appear in the upper layers of the at-
mosphere, we can treat them as a separate purely emis-
sive “aurora layer.” Below 80km is the bulk of the
lower atmosphere, which both absorbs and scatters light
as discussed in Appendix A. Underneath all of this
is the planet’s surface. Because the lower atmosphere
includes scattering, implemented using alpha blending,
we must composite the layers in the correct order.

A general-purpose raytracer typically uses recursion
to resolve the depth order of multiple layers of translu-
cent geometry that intersect a ray, but this general solu-
tion is not appropriate in our case. First, GPU hardware
that directly supports recursion was only introduced in
2010 with the NVIDIA Fermi line, and most current
cards do not directly support recursion. Second, even
where it is supported this recursive search for geometry
is expensive, typically requiring O(n2) intersection tests
to determine the depth order of n translucent layers, and
we find the many branches required can become a lim-
iting factor in a high performance GPU raytracer.

Thus instead of a recursive search, for each ray we
programmatically determine the correct compositing
order of the intersected geometry, as summarized in
Figure 8. The easy case is 8(a), where the ray misses
all geometry and heads out into deep space. Case 8(b)
is a ray that enters the aurora layer, accumulates some
emitted energy, and exits. The most complex case is
8(c), where the aurora layer is entered twice: once be-
fore the atmosphere, then some aurora light is scattered
out by the atmosphere, and finally a disjoint stretch of
aurora layer emits more light into the ray. Finally, case
8(d) begins on the planet’s surface, whose light is atten-
uated by the atmosphere, and then some aurora light is
picked up before reaching the viewer. The same cases
apply for a viewer inside the aurora layer. For a viewer
inside the lower atmosphere, the only two compositing
possibilities are atmosphere then planet, or atmosphere
then aurora.

One limitation of our explicit ray compositing order
is we do not support atmospheric refraction. However,
Earth’s atmosphere only very gently refracts rays, re-
sulting in a maximum curvature near the horizon which
is less than 1/6 of the planet’s curvature, so we feel it is
acceptable to ignore atmospheric refraction.

Given a portion of a ray that intersects the aurora
layer, in principle we step through the layer accumu-
lating aurora energy, at each step sampling the aurora
curtain footprint in 2D and multiplying it by the height-
dependent energy deposition function. The step size is

Figure 8: Possible ray/geometry intersection paths for camera rays originating outside the atmosphere.

Figure 9: Naive ray stepping, left, is inefficient when
curtains are sparse. Using a distance field, as shown on
the right, allows the raytracer to take much larger steps
in the empty spaces between curtains.

Figure 10: On the left, aurora curtain footprints. On the
right, the distance field to accelerate raytracing those
curtains.

a tunable parameter, with finer steps giving more aurora
detail but as we show in Section 4, taking more time to
compute. The step size is limited by the resolution of
the aurora footprint texture: an 8192x8192 aurora foot-
print stretched across a 12742km diameter planet gives
pixels that are 1.55km along the coordinate axes, and
2.2km diagonally. We find a 2km step size gives a rea-
sonable quality image, but with naive sampling is quite
slow. In the next section, we show how to accelerate the
aurora sampling process.

3.2 Acceleration via a Distance Field
The auroral layer is hundreds of kilometers high, and
wraps around a planet thousands of kilometers in di-
ameter. Yet auroral curtains are only a few kilometers
thick, so as we step along a ray we must sample the au-
rora layer at least every few kilometers to avoid missing
curtains. Even modern GPU hardware cannot support
thousands of such 3D samples per pixel in real time,
since there are millions of onscreen pixels.

However, most of the auroral layer does not actually
contain curtains, so if we could skip over the empty
space between curtains, we could dramatically improve
our overall performance. Figure 9 illustrates the prob-
lem, and the solution we use: a distance field [Coh94].
This field stores the distance to the nearest geometry,
which allows the raytracer to take much larger steps
through empty space.

The distance field is stored as a 2D texture, with a
slightly lower resolution than the aurora curtain image.
As we step along a ray, we read the step size from the
distance field, so we step at a fine 2km/step rate while
inside curtains; yet can take much longer steps far from
curtains, up to 1000km/step, without ever skipping over
a curtain. In pseudocode, our sampling loop through the
aurora is as follows.

float t = ray.start;
while (t < ray.end) {

vec3 P = ray.origin + ray.dir*t;
t += distance_field(P);
aurora += sample_aurora(P);

}

One surprising aspect of the GPU branch hardware is
that it is actually a performance loss to skip the aurora
sampling when distant from a curtain. We found it to
be at least 18% slower to do the following “optimized”
sampling; our other attempts at similar optimizations
have been up to sevenfold slower!

float t = ray.start;
while (t < ray.end) {

vec3 P = ray.origin + ray.dir*t;
float d = distance_field(P);
t += d;
if (d<ε) /* inside curtain */

aurora += sample_aurora(P);
}

The performance problem in this sort of loop is branch
divergence, when some GPU threads take the distance-
dependent branch and sample the curtain while others
do not. The large GPU branch divergence penalty ex-
ceeds the savings from avoided samples, which makes

it faster to simply sample everywhere than to carefully
decide whether to sample or not.

We generate the distance field from the curtain image
on the GPU, but as a preprocess before rendering. We
use a clever constant-time algorithm known as “jump
flooding” [Ron06], which takes distance propagation
steps at power of two distances to fill the distance field
across the 2D image.

3.3 Coloring the Aurora
On short timescales, the upper layers of the aurora are
green, while the lower layers have a purple tinge. We
use the Baronoski et al. [Bar00] approach to convert the
auroral emissions’ isolated spectral color peaks to CIE
XYZ and then a linear sRGB colorspace.

More difficult are numerical problems encountered
while summing thousands of dim samples. In Baronoski
et al., aurora samples are forward mapped and summed
in a framebuffer, while we step along camera rays in
a loop on the GPU. Because the GPU registers are
floating-point, and floating-point framebuffers are ex-
pensive, a raytracer can more efficiently sum aurora
samples in a high precision and high dynamic range lin-
ear colorspace. We then convert to the standard sRGB
gamma of 2.2 using the following function, which out-
puts a color with vector magnitude equal to the old
magnitude raised to the 1/2.2 power.

float brightness=length(color);
return color*pow(brightness,1/2.2-1);

4 PERFORMANCE ANALYSIS
We use the standard OpenGL Shading Language, GLSL,
to implement our GPU aurora raytracer. Unlike the
general-purpose GPU languages CUDA and OpenCL,
the older GLSL is specialized for rendering tasks, so
it directly supports graphics hardware features such as
anisotropic mipmapping. Table 1 compares the perfor-
mance of our GPU aurora rendering algorithm across
various GPU families, and a C++ OpenMP multicore
CPU version of the algorithm. Even using four cores
and nearest-neighbor texture sampling, the CPU runs
about a hundred times slower than the GPU versions.

Table 2 lists the performance impact of various al-
gorithm and parameter modifications. This is a list of
alternatives not chosen for the current implementation,
although many of these could still be useful.

Our raytracer acceleration distance field results in
rather dramatic per-pixel performance variations, as
shown in Figure 11. The corresponding frame is shown
in Figure 1. Where multiple curtains cross camera rays
the rendering cost can be hundreds of nanoseconds per
pixel, while empty regions of space require less than
ten nanoseconds per pixel. This experiment was run
on the NVIDIA GeForce 8800M GTS; timings on dif-
ferent cards vary, but the ratios are similar. This fig-

GPU FPS
NVIDIA GeForce GTX 280 60fps

NVIDIA GeForce 8800M GTS 38fps
ATI Radeon HD 4830 23fps

Intel Q6600 2.4GHz Quad-Core CPU 0.4fps
Table 1: Comparing renderer performance across hard-
ware. Resolution is 720p: 1280x720.

Modified Rendering Method Cost
No distance field, use naive stepping +350%
Make aurora layer 100km thicker +32%
Take 1km steps through aurora, not 2km +60%
Take 4km steps through aurora, not 2km -33%
No table, use TGCM deposition function +55%
No decibel map, linear deposition table -10%
No deposition function, constant value -14%
No curtain footprint image lookup -14%
No exponential atmosphere -15%
No planet texture -0.6%
No sRGB gamma correction -0.5%

Table 2: Performance impact of various alternatives.
Positive time cost lowers framerate.

Figure 11: Measured rendering time per pixel: black
represents 10ns/pixel, white represents 200ns/pixel.

ure is somewhat blurred due to the nature of GPU per-
formance analysis: GPU hardware provides no means
to time individual pixels, and in fact extensive GPU
pipelining makes per-pixel timing difficult to even de-
fine, so instead we time overlapping blocks of 64x64
pixels. After several repetitions, the median per-block
times are converted to per-pixel times by subtracting off
the per-block overhead and dividing by the number of
pixels. The remaining sampling jitter due to OS and
driver overhead is approximately σ = 2ns/pixel.

4.1 GPU Aurora on a Powerwall
We used the parallelizing library MPIglut [Law08] to
port our sequential OpenGL/GLUT aurora rendering
application to a twenty-screen powerwall, as shown in
Figure 12. This was a surprisingly straightforward pro-
cess, involving recompiling the rendering application

Figure 12: Interactive aurora rendering on a powerwall
cluster with ten GPUs and twenty screens at 29fps.

GPUs Resolution FPS Speedup
1 1680x2100 35 1
2 3360x2100 30 1.6
4 6720x2100 27 3.0
8 6720x4200 29 6.5

10 8400x4200 29 8.2
Table 3: Parallel aurora rendering via MPIglut.

with MPIglut instead of glut, and running the result-
ing binary. Scalability as shown in Table 3 is rea-
sonably good, although view-dependent load imbalance
becomes large when some screens must draw complex
curtains and other screens only empty space; for the
benchmark this impacts the two and four GPU val-
ues somewhat. The aggregate rendering rate on ten
NVIDIA GeForce GTX 280 cards is a little over 29
frames per second at 8400x4200 resolution, or just over
a billion finished pixels per second.

5 CONCLUSIONS
With only moderate programming effort, modern graph-
ics hardware is capable of truly incredible amounts of
computation. We have harnessed that power to render
the aurora at interactive rates, but much work remains.

At the moment, our raytracer implementation stands
alone, and includes no polygonal geometry. It would be
relatively straightforward to extend this to a hybrid ray-
tracer, where ordinary polygon-based geometry is first
rasterized to a typical depth buffer, and these depth val-
ues are then used to limit the extent of each ray [Sch05].
This extension would allow the techniques described
in this paper to add atmospheric and aurora effects to
a scene that includes terrain, vegetation, spacecraft, or
other geometry.

We currently render a single instantaneous snapshot
of the aurora; the viewer is free to move, but the cur-
tains are stationary. It should be straightforward to ex-

tend this to animating curtains, and we have done so
offline, but image I/O and texture upload rate becomes
an issue when rendering in realtime. Similarly, we cur-
rently do not integrate the curtains across the minutes-
long timescale that gives high red aurora. This should
be a simple change to our input curtain footprint im-
ages. Both changes should allow a detailed compari-
son with the widespread seconds-long-exposure photo-
graphic images of the aurora.

Since aurora are purely emissive phenomena, our at-
mospheric airmass model currently ignores clouds and
the interesting multiple scattering effects of sunlight on
the air. Incorporating these effects would allow us to
simulate aurora at sunrise, or aurora rising over a thun-
derhead. More ambitiously, implementing a global il-
lumination algorithm such as photon mapping or path
tracing could allow aurora to cast light onto complex
geometry, such as a mountainside or spacecraft.

Aurora are visible on many planets, and often display
curtains and dynamics similar to those on Earth. How-
ever, the dynamics of aurora on planets without a single
dominant magnetic field, such as Venus or Mars, can be
quite different, and simulations would be beneficial for
studying these fascinating phenomena.

ACKNOWLEDGEMENTS
The authors sincerely thank Dr. Syun-Ichi Akasofu
for providing the schematics of a typical auroral sub-
storm and the video capture in Figure 4, as well as Dr.
Bill Brody for digitizing and animating that substorm
as a series of continuous splines as shown in Figure 2.
Our night earth texture is from NASA’s Visible Earth
project. Previous support for this project has been pro-
vided by the American Museum of Natural History.

REFERENCES
[Aka64] Syun-Ichi Akasofu. The development of the

auroral substorm. Planetary and Space Science,
12(4):273 – 282, 1964.

[Bar00] G.V.G. Baranoski, J.G. Rokne, P. Shirley,
T. Trondsen, and R. Bastos. Simulating the aurora
borealis. In Computer Graphics and Applications,
pages 422–432, october 2000.

[Bar05] Gladimir V. G. Baranoski, Justin Wan, Jon G.
Rokne, and Ian Bell. Simulating the dynamics of
auroral phenomena. ACM Trans. Graph.,
24(1):37–59, 2005.

[Coh94] D Cohen and Z Sheffer. Proximity clouds–an
acceleration technique for 3D grid traversal. The
Visual Computer, 11(1):27–38, 1994.

[Fan08] X. Fang, C. E. Randall, D. Lummerzheim, S. C.
Solomon, M. J. Mills, D. R. Marsh, C. H.
Jackman, W. Wang, and G. Lu. Electron impact
ionization: A new parameterization for 100 eV to
1 MeV electrons. J. Geophys. Res., 113(A09311),
2008.

[Hed91] A. E. Hedin. Extension of the MSIS Thermosphere
Model into the Middle and Lower Atmosphere. J.
Geophys. Res., 96(A2):1159–1172, 1991.

[Kaj84] James T. Kajiya and Brian P Von Herzen. Ray
tracing volume densities. SIGGRAPH Comput.
Graph., 18(3):165–174, 1984.

[Law08] Orion Sky Lawlor, Matthew Page, and Jon Genetti.
MPIglut: Powerwall programming made easier.
Journal of WSCG, pages 130–137, February 2008.

[Lum92] D. Lummerzheim. Comparison of energy
dissipation functions for high energy auroral
electrons and ion precipitation. Technical Report
UAG-R-318, Geophys. Inst., Univ. of
Alaska-Fairbanks, April 1992.

[Nis10] Y. Nishimura, J. Bortnik, W. Li, R. M. Thorne,
L. R. Lyons, V. Angelopoulos, S. B. Mende, J. W.
Bonnell, O. Le Contel, C. Cully, R. Ergun, and
U. Auster. Identifying the driver of pulsating
aurora. Science, pages 81–84, October 2010.

[Par98] Steven Parker, Peter Shirley, Yarden Livnat,
Charles Hansen, and Peter-Pike Sloan. Interactive
ray tracing for isosurface rendering. Visualization
Conference, IEEE, 0:233, 1998.

[Pur02] Timothy J. Purcell, Ian Buck, William R. Mark,
and Pat Hanrahan. Ray tracing on programmable
graphics hardware. ACM Transactions on
Graphics, 21(3):703–712, July 2002. ISSN
0730-0301 (Proceedings of ACM SIGGRAPH
2002).

[Rob87] R. G. Roble and E. C. Ridley. An auroral model
for the NCAR thermospheric general circulation
model (TGCM). Annales Geophysicae, Series A -
Upper Atmosphere and Space Sciences, pages
369–382, december 1987.

[Ron06] Guodong Rong and Tiow-Seng Tan. Jump
flooding in GPU with applications to Voronoi
diagram and distance transform. In I3D ’06:
Proceedings of the 2006 symposium on Interactive
3D graphics and games, pages 109–116, New
York, NY, USA, 2006. ACM.

[Sch05] Henning Scharsach. Advanced GPU raycasting. In
Proceedings of CESCG, 2005.

[Sta99] Jos Stam. Stable fluids. In SIGGRAPH ’99
Conference Proceedings, pages 121–128, 1999.

[Sto98] John Stone. An efficient library for parallel ray
tracing and animation. Master’s thesis, Dept. of
Computer Science, University of Missouri Rolla,
1998. http://jedi.ks.uiuc.edu/j̃ohns/.

[You69] A.T. Young. High-resolution photometry of a thin
planetary atmosphere. Icarus, 11(1):1–23, March
1969.

A CALCULATING AIRMASS
The integral of atmospheric density along a ray, known
as “airmass,” is widely used in astronomy, and we use
it to approximate both the aurora light lost to the at-
mosphere, and night sky light added. A gravitationally
bound atmosphere of uniform temperature and compo-
sition falls off in density at an exponential rate with
height: D(z) = e−z/H , with the exponential constant H
known as the atmosphere’s “scale height.” The airmass
integral along a ray parameterized by t is then:

A =
∫ te

ts
D(z(t))dt =

∫ te

ts
e−z(t)/Hdt

Even assuming a spherical planet, height varies non-
linearly along the ray path: z(t) =length(~S+ t~D)− r =√

a+bt + ct2− r, so:

A =
∫ te

ts
e−
√

a+bt+ct2−r
H dt

This integral cannot be solved in closed form. A
trigonometric substitution [You69] allows high-order
terms to be discarded, giving an integral that is easy to
evaluate at the surface of the planet or at infinity, but a
general raytracer requires arbitrary start and end points.
We do this by approximating z(t)/H with a quadratic
m + l t + kt2. We can eliminate the linear term l by
translating the ray parameter t to t ′, leaving m as the
height of closest approach of the ray to the planet, and
k as the quadratic slope of that approach, both measured
in scale height units.

A≈
∫ t ′e

t ′s
e−m−kt2

dt

This integral can be evaluated exactly using the error
function “erf”:

A≈ e−m
√

π

4k

(
erf(
√

kt ′e)− erf(
√

kt ′s)
)

Some GPU languages like GLSL do not have a built-in
erf, so we use the Winitzki approximation:

erf(x)≈

√
1− e−x2

4
π +0.147x2

1+0.147x2

Despite the plentiful transcendentals, this performs quite
well on the graphics card at runtime. Despite the stacked
approximations, accuracy appears quite good as well,
except where numerical roundoff causes the erf differ-
ence to approach zero. This case can be handled by
either falling back to a linear approximation of z(t), or
by interpreting the finite difference of erf values as a
scaled derivative of erf: e−kt2

.

