
Multiple Flows of Control in Migratable Parallel Programs

Gengbin Zheng, Orion Sky Lawlor∗, Laxmikant V. Kaĺe
Department of Computer Science

University of Illinois at Urbana-Champaign
gzheng@uiuc.edu, olawlor@acm.org, kale@uiuc.edu

Abstract

Many important parallel applications require multiple
flows of control to run on a single processor. In this paper,
we present a study of four flow-of-control mechanisms: pro-
cesses, kernel threads, user-level threads and event-driven
objects. Through experiments, we demonstrate the practi-
cal performance and limitations of these techniques on a
variety of platforms. We also examine migration of these
flows-of-control with focus on thread migration, which is
critical for application-independent dynamic load balanc-
ing in parallel computing applications. Thread migration,
however, is challenging due to the complexity of both user
and system state involved. In this paper, we present several
techniques to support migratable threads and compare the
performance of these techniques.

1 Introduction

When a program consists of many concurrent tasks, it
is often simplest to represent these tasks with independent
flows of control. Concurrency is required by many applica-
tions.

• Large scale scientific and engineering applications
such as molecular dynamics simulation code [33],
where the computation on each partitioned molecular
system cube space can be treated as a separate flow of
control.

• Processor virtualization in parallel programming [20,
21], which simplifies development and improves per-
formance by dividing up the work on one physical pro-
cessor into many “virtual processors”, each an inde-
pendent flow of control.

• Large parallel machine simulation, where separate
flows of control can be used to represent each simu-
lated physical processor [40].

∗Department of Computer Science, University of Alaska Fairbanks

• Parallel discrete event simulations, where each simu-
lation object can be treated as a separate flow of con-
trol [39].

• Web and other network servers, where communication
with each client can be handled by a separate flow of
control.

In this paper, we will focus on high-concurrency parallel
programs, and use the term “flows” instead of “threads-of-
control” to avoid confusion with threads, a particular kind
of control flow.

One processor can only execute one flow of control at a
time. A flow-of-control may suspend its execution and give
control to another flow either because of external reasons,
such as an interrupt indicating the end of a time slice; or
because of internal reasons, such as an explicit yield or a
wait on an event or resource. A suspended flow-of-control
can be resumed at a later time.

There are several methods for supporting multiple flows
of control. The oldest example of this sort of concurrent
programming is coroutines [27]. Some methods are sup-
ported by the OS kernel itself, including separate processes
as described in Section 2.1, and kernel threads in Sec-
tion 2.2. Other methods are like coroutines in that they are
defined and supported entirely by user code, such as user-
level threads of Section 2.3 and event-driven objects of Sec-
tion 2.4. We analyze the performance of these methods in
Section 4.

On multiprocessor systems, distributing execution of
flows-of-control over multiple processors can exploit par-
allelism and thus achieve improved performance. How-
ever, the load in parallel applications may change over
time, and to keep overloaded processors from bottleneck-
ing the overall computation, we must perform load balanc-
ing [35]. Although migrating flows-of-control between pro-
cessors is challenging, it presents a useful way to implement
application-independent load balancing [41]. Section 3 de-
scribes obstacles to and techniques for migrating the flows
of control across processors.



2 Mechanisms for Supporting Multiple
Flows of Control

A flow of control is a single sequential stream of exe-
cuted instructions, including subroutine calls and returns.
Normal machines directly represent a flow of control as the
set of machine registers and the machine’s execution stack.
The scheduling of multiple flows of control on a processor
can be supported in either OS kernel or user code.

The basic methods for flows of control examined in this
paper include processes, kernel threads, user-level threads
and event-driven objects.

2.1 Processes

The simplest and oldest flow of control is the process,
which wraps a complete address space around a flow of
control. All modern machines support multiple processes,
although some parallel machines or schedulers do not al-
low them or place restrictions on them. For example, Myri-
com’s GM interface does not allowfork or system calls
while Myrinet network ports are open. Other exceptions
include the Blue Gene/L [2] and ASCI Red [36] microker-
nels, which do not have conventional virtual memory sys-
tems and hence do not support UNIX system calls such as
fork , system andexec .

The advantage of the process model is its complete sepa-
ration of state. Because a processes’ flow of control is com-
pletely walled off within its own separate address space and
operating system context, processes fully support separate
global variables, memory management, blocking I/O calls,
and signals.

However, for parallel programming, the total separation
of the process model makes it more difficult to communi-
cate between the various flows of control that make up a
program. Processes can only interact using relatively lim-
ited, cumbersome methods such as pipes and sockets, or
with more difficult explicitly shared memory regions such
as SYSV Interprocess Communication (IPC). Furthermore,
processes are considered “heavy-weight”. The substantial
amount of per-process kernel state increases the amount of
memory used by each process, and increases the overhead
of process creation and switching. Worse, some operating
systems have a fixed and fairly low limit on the number of
processes that can be created. Table 2 in Section 4 summa-
rizes these practical limitations on several stock systems.

2.2 Kernel Threads

Kernel threads consist of a set of registers, a stack, and
a few corresponding kernel data structures. When kernel
threads are used, the operating system will have a descrip-
tor for each thread belonging to a process and it will sched-

ule all the threads. Unlike processes, all threads within a
process share the same address space. Similar to processes,
when a kernel thread makes a blocking call, only that thread
blocks. All modern machines support kernel threads, most
often via the POSIX threads interface “pthreads”. Some
dedicated parallel machines support kernel threads poorly
or not at all. For example, the Blue Gene/L microkernel
does not support pthreads.

The purported advantage of kernel threads over pro-
cesses is faster creation and context switching compared
with processes. For shared-memory multiprocessor archi-
tectures, the kernel is able to dispatch threads of one process
on several processors, which leads to automatic load balanc-
ing within the nodes. For parallel programming, threads al-
low different parts of the parallel program to communicate
by directly accessing each others’ memory, which allows
very efficient, fine-grained communication.

Kernel threads share a single copy of the entire ad-
dress space, including regions such as global data that may
cause conflicts if used by multiple threads simultaneously.
Threads can also cause unintentional data sharing, which
leads to corruption and race conditions. To avoid this unin-
tentional sharing, programs must often be modified to either
lock or access separate copies of common data structures.
Several very widely used language features are unsafe when
used with threads, such as the use of global and static vari-
ables, or the idiom of returning a reference to a static buffer.
Especially with large existing codebases with many global
variables, this makes kernel threads very difficult to use be-
cause in most implementations of kernel threads, it is not
possible to assign each thread a private set of global vari-
ables.

Kernel threads are considered “lightweight,” and one
would expect the number of threads to only be limited by
address space and processor time. Since every thread needs
only a stack and a small data structure describing the thread,
in principle this limit should not be a problem. But in prac-
tice, we found that many platforms impose hard limits on
the maximum number of pthreads that can be created in a
process. Table 2 in Section 4 shows the practical limitations
on pthreads on several stock systems.

In particular, operating system kernels tend to see kernel
threads as a special kind of process rather than a unique en-
tity. For example, in the Solaris kernel threads are called
“light weight processes” (LWP’s). Linux actually cre-
ates kernel threads using a special variation of fork called
“clone,” and until recently gave each thread a separate pro-
cess ID. Because of this heritage, in practice kernel threads
tend to be closer in memory and time cost to processes than
user-level threads, although recent work has made some
progress in closing the gap, including K42 [5] and the
Native POSIX Threading Library (NPTL) and Linux O(1)
scheduler.

2



2.3 User-Level Threads

Like a kernel thread, a user-level thread includes a set
of registers and a stack, and shares the entire address space
with the other threads in the enclosing process. Unlike a
kernel thread, however, a user-level thread is handled en-
tirely in user code, usually by a special library that provides
at least start, swap and suspend calls. Because the OS is un-
aware of a user-level thread’s existence, a user-level thread
cannot separately receive signals or use operating system
scheduling calls such as sleep(). Many implementations of
user-level threads exist, including: GNU Portable Threads
(Pth) [1], FreeBSD’s userland threads, QuickThreads [26]
and those developed by us for the Charm++ system [25].

The primary advantages of user-level threads are effi-
ciency and flexibility. Because the operating system is not
involved, user-level threads can be made to use very little
memory, and can be created and scheduled very quickly.
User-level threads are also more flexible because the thread
scheduler is in user code, which makes it much easier to
schedule threads in an intelligent fashion — for example,
the application’s priority structure can be directly used by
the thread scheduler [9].

The primary disadvantage of user-level threads com-
pared to kernel threads is the lack of operating system sup-
port. For example, when a user-level thread makes a block-
ing call, the kernel does not start running another user-
level thread. Instead, the kernel suspends the entire call-
ing kernel thread or process, even though another user-level
thread might be ready to run. To avoid this blocking prob-
lem, some systems such as AIX and Solaris support “N:M”
thread scheduling, which maps some numberN of appli-
cation threads onto a (usually smaller) numberM of ker-
nel entities. There are two parties, the kernel and the user
parts of the thread system, involved in each thread operation
for N:M threading, which is complex. The blocking prob-
lem can also be avoided by building a smarter runtime layer
which intercepts blocking calls, replaces them with a non-
blocking call, and starts another user-level thread while the
call proceeds [1]. Yet another approach is to provide sup-
port in the kernel to notify the user-level scheduler when a
thread blocks, often called “scheduler activations” [3, 38].

Since user-level threads are controlled in user code, there
is virtually no limit on the maximum number of threads as
long as the resource allows. In practice, one can create
50,000 user-level threads on a Linux box very easily (see
Table 2).

2.4 Event-Driven Objects

Rather than storing and restoring machine registers to
pause and resume execution, the program can be divided
into pieces each of which manually stores and restores their

state. A single “scheduler” routine then provides the glue
to execute these pieces in the appropriate sequence. For ex-
ample, rather than making a blocking call, the event-driven
style would post an asynchronous request, then explicitly
return control back to the scheduler. Once the request com-
pletes, the scheduler will call the object again to resume
execution. We have explored this idea in Charm++ runtime
system [24] extensively.

This “event-driven” style avoids operating system and
other low-level problems completely. Because suspending
and resuming execution is simply a function call, the event-
driven style can also be very efficient.

However, the event-driven style can be more difficult for
programmers. In particular, if it becomes necessary to block
from inside a deeply nested subroutine call, all the calling
routines must be changed to pass control back up to the
scheduler. Also, a reactive and event-driven style of pro-
gramming obscures the description of the life-cycle of an
object. For example, a program would specify thatwhen
this message A arrives, execute method F; when B arrives,
execute G, but cannot specify that the object is going to re-
peatedly processA andB messages in alternating sequence
k times [32].

2.4.1 Return-Switch Functions

A C or C++ subroutine can be written in a return-switch
style to mimic thread suspend/resume. When the subrou-
tine is “suspended”, it returns instead of blocking with a flag
indicating the point it left off. When the subroutine is “re-
sumed”, the same subroutine is called with the flag which
can then be used in a “goto” or “switch” statement to re-
sume execution at the point it left off. It is possible to wrap
a technique similar to Duff’s Device inside a set of macros
to make this “save, return, and resume from label” process
mostly transparent to the programmer [37]. However this
technique can still be confusing, error-prone and tough to
debug.

2.4.2 Structured Dagger

Subroutines can also be suspended without using threads or
macros by applying a simple pre-processor. We developed
Structured Dagger (SDAG) [22] as a coordination language
for expressing the control flow within a Charm++ parallel
object naturally using certain C language-like constructs.
In parallel programming, it leads to a style of programming
which cleanly separates parallel from sequential functional-
ity.

Figure 1 shows an example of a parallel 5-point stencil
program with 1-D decomposition and ghost cell exchange
written in SDAG. In the program, thefor loop implements
an outer iteration loop. Each iteration begins by calling
sendStripToLeftAndRightin an atomic construct to send

3



entry void stencilLifeCycle()
{

for (i=0; i<MAX_ITER; i++)
{

atomic {sendStripToLeftAndRight();}
overlap
{

when getStripFromLeft(Msg *leftMsg)
{ atomic { copyStripFromLeft(leftMsg); } }

when getStripFromRight(Msg *rightMsg)
{ atomic { copyStripFromRight(rightMsg); } }

}
atomic{ doWork(); /* loops over interior */ }

}
}

Figure 1. Sample code in Structured Dagger

out messages to the neighbors.1 Theoverlap immediately
following asserts that the two events corresponding toget-
StripFromLeftandgetStripFromRightcan occur and be pro-
cessed in any order. Thewhen construct simply says that
when a message (e.g.getStripFromLeft) arrives for the con-
struct, it invokes theatomic action which calls a plain C++
function copyStripFromLeftto process the message. After
bothwhen constructs are executed, functiondoWorkin the
last atomic construct will be invoked and the program en-
ters the next iteration of the for loop. The Structured Dagger
preprocessor transforms all this syntax into code for an effi-
cient finite-state machine, which receives and processes the
network messages at runtime.

Overall, the event-driven style can be made quite effi-
cient and reasonably easy to program. However, the event-
driven style is difficult to apply to existing codes—in partic-
ular, most parallel programming interfaces like the Message
Passing Interface (MPI) are written in terms of blocking
subroutine calls like MPIRecv. A traditional C-compatible
compiled library can only hope to switch tasks at these
blocking calls by saving and restoring the machine’s stack
and registers in a threadlike fashion. Hence for the remain-
der of this paper, we focus on supporting threads.

3 Migration

Migration, the process of moving work from one proces-
sor to another, is a very flexible tool that can be used to solve
a variety of problems in parallel computing. For example,
migration can be used to improve load balance, by migrat-
ing work away from overloaded processors [11, 4, 41, 6].
Migration can improve communication performance, by
moving pieces of work that communicate with each other
closer together [33]. Migration can allow all the work to be
moved off a processor [17] to allow another job to run there
[10], or to vacate a node that is expected to fail or be shut
down [34]. Migration techniques can also be used to imple-
ment checkpoint/restart for fault tolerance [12, 42] — under

1The atomic construct encapsulates sequential C/C++ language code.

this model, checkpointing is simply migration to disk or the
local memory of a remote processor. In this section, we
describe issues related to the migration of the flows of con-
trol. However, we will mainly focus on the thread migra-
tion techniques that we developed in the Charm++/AMPI
runtime systems.

3.1 Migration State

To migrate a piece of work to a new processor, we must
ensure that all needed state information will be available on
the new processor. In a fully shared-memory parallel sys-
tem, this is trivial—because all processors implicitly share
all state, migration simply means transferring control to the
new processor, which will be able to access the work’s state
directly.

In a distributed-memory parallel system, we must either
proactively ship all needed state along with the piece of
work; or else lazily ship state as it is needed. Lazy mem-
ory state shipping is commonly done by software distributed
shared memory systems. State that is shared between sev-
eral threads clearly can not simply be shipped to a new loca-
tion, and so must be either shuffled back and forth at runtime
(costing performance) or tightly regulated or banned (cost-
ing flexibility). We currently allow shared state only via
well-defined interfaces in our own work related to Charm++
and AMPI runtime.

The state required by a migrating control-of-flow invari-
ably falls into one of three categories:

• Memory state, which includes dynamically allocated
data stored in the heap, local variables stored in the
stack, and global variables.

• Communication state, which includes pending outgo-
ing and incoming network messages.

• Kernel state, which includes open files, mapped and
shared regions of memory, and pending signals.

Most migration systems only support shipping a subset
of the possible state, forcing users to manually reconstruct
other state. In the case of migratable threads, when several
threads in a process can share memory, kernel, and com-
munication state, it can be very difficult to extract the set of
resources needed by a single thread. In our Charm++/AMPI
runtime system, we only allow different threads to share
state in a small number of well-defined ways, which makes
it possible to efficiently migrate a single thread to a different
address space.

3.1.1 Memory State Migration

Migrating memory state is conceptually quite straightfor-
ward — all needed memory is collected and shipped to the

4



new processor. This is complicated in practice by various
low-level difficulties.

For heap data, we must collect all the allocated data for
a particular piece of work. For object-oriented applications,
we have built a convenient and general-purpose framework
for describing and shipping complicated user-defined ob-
jects called the PUP (Pack/UnPack) Framework [19]. For
more general applications, it is possible to provide hooks to
the memory allocation routines (malloc) to capture all the
memory allocated by each thread.

For global variables, process migration is straightfor-
ward because each process image contains a separate copy
of the global variables. For thread migration, however, if
several threads in a process share global variables, it may
be impossible to extract the value needed by each thread.
Our current solution is to privatize global variables so that
each user-level thread has its own copy of the global vari-
ables. Thus migration of global variables is conceptually
simplified. In order to support the transparent privatiza-
tion of global variables for existing codebases, we imple-
mented aswap-globalscheme by analyzing the Executable
and Linking Format (ELF) object files in a way similar to
the Weaves runtime framework [31]. A dynamically linked
ELF file format executable always accesses global variables
via the Global Offset Table (GOT), which contains one
pointer to each global variable. To make separate copies of
the global variables, we then simply make separate copies of
the GOT—one for each user-level thread. The thread sched-
uler then swaps the GOT when switching threads.

3.1.2 Communication State Migration

In our runtime system, migration entities only communicate
via the communication sub-system, which provides a loca-
tion independent communication that supports migration at
any time. We have constructed an efficient communication
system that allows object or thread migration with ongo-
ing point-to-point and collective communication. As this
system is described in our earlier work [28], we will not
describe it in detail here.

3.1.3 Kernel State Migration

Kernel state includes data managed by the OS for the ap-
plication — for example, the state of open files, signals.
Kernel state is mostly invisible to users and is platform-
dependent, so very few systems support kernel state mi-
gration. Instead, kernel state is often treated as a non-
migratable portion of a migrating process. For example,
Mosix [6] divides migrating process into migratable user
context, and non-migratable system context information.
Our runtime system currently does not support migration
of kernel state.

3.2 Event-driven Objects

The simplest kind of migration is for event-driven ob-
jects [41, 8, 7, 10, 11]. In Charm++ runtime system, event-
driven objects are normally location-independent, requiring
little persistent runtime or system state. Because the entire
execution state normally consists of a few application data
structures and the name of the next event to run, to migrate
to a new processor we need only copy these data structures
to a new processor and begin executing the next event.

3.3 Process Migration

Because processes provide a well-defined memory, ker-
nel, and communication interface, process migration is an
old and widely implemented technique. Since the entire
address space is migrated, all the pointers in the user ap-
plication are still valid on the new processor. Systems that
support process migration include Sprite [13], Condor [29],
MOSIX [6], and many others, including the recent VMAD-
UMP interface for Linux [14]. An extensive survey is avail-
able from the ACM [30]; so we will not go into further detail
here.

3.4 Thread Migration

Thread migration is very challenging due to the fact that
the system and user state of a thread is only one part of an
enclosing process. It is often very difficult to extract the
state of one thread from the others in a process. For ex-
ample, heap data allocated by a thread may be shared by
multiple threads. In our work, we assume that the user data
allocated by one thread is used only by that thread. Data
sharing among threads can still be achieved via read-only
global varaibles or fast local message passing via the thread
scheduler.

Another difficult aspect of thread migration is the fact
that a thread stack contains a large number of pointers
(including function return addresses, frame pointers, and
pointer variables), and many of these point into the stack it-
self. Thus, if we copy the thread stack to another processor,
all these pointers must be updated to point to the new copy
of the stack instead of the old copy. However, because the
stack layout is determined by the vagaries of the machine
architecture and compiler, there is no simple and portable
method by which all these pointers can even be identified,
much less changed.

A feasible approach for thread migration, then, is to
guarantee that the stack will have exactly the same address
on the new processor as it did on the old processor. Because
the stack addresses haven’t changed, no pointers need to be
updated because all references to the original stack’s data

5



remain valid on the new processor. This idea was origi-
nally developed for thread migration in the PM2 runtime
system [4]. In the following subsections, we present three
mechanisms to ensure that the stack’s address remains the
same after migration. These mechanisms for migration ap-
ply to both kernel and user-level threads. However, in this
paper, we will mainly focus on the migration of te user-level
threads supported by the Charm++ and AMPI runtime sys-
tems.

3.4.1 Stack Copying Threads

A naive implementation of this approach called “stack-
copying threads” is simply to pickone address for the
stack system-wide. The thread scheduler then copies each
thread’s stack data into this address before executing the
thread, and copies it out again when the thread is suspended.
Because there is only one address used by all active thread
stacks even on different processors, migrating a thread is
simple.

One complicating factor is that modern machines may
not always allocate the system stack at the same virtual
memory address on each processor. A fixed stack address
makes it easier to mount a buffer overflow (“stack smash-
ing”) attack, so some systems change the stack’s starting
address from run to run as a security measure. On such sys-
tems, it is thus impossible to use the system stack for stack
copying threads because the stack address is different on
each machine.

Stack copying threads suffer from the high cost incurred
by stack copying. Because the entire stack must by copied
for each thread switch, changing threads is quite slow, espe-
cially when the stack contains a large amount of data. Fur-
ther, because there is only one stack location, there can only
be one thread active in each address space, which means
a machine with two physical processors cannot run two
stack-copying theads from the same address space simul-
taneously.

3.4.2 Isomalloc Thread Migration

The PM2 implementaton of “isomalloc” [4] overcomes
these disadvantages by allocating a globally unique address
for each thread stack. To avoid conflicts between threads,
stack addresses must be unique across the entire parallel
machine, which makes allocating stacks somewhat compli-
cated. As illustrated in Figure 2, the PM2 approach is to
divide up the entire unused virtual memory address space,
or “isomalloc region,” into per-processor slots which can
subsequently be allocated in parallel. This isomalloc region
must be agreed upon by all processors at startup—normally
the largest space available lies between the process stack
and the heap. A processor can then grant any local thread
a new globally reserved range of virtual addresses from

within that processor’s region of the shared address space.
The threads can then be confident that they can migrate to
any other processor, and their addresses will be free for use
on that processor.

This approach can be seen as a sort of distributed shared
memory system, in that each thread is using globally unique
virtual memory addresses. However, because threads never
directly share data, we can eliminate the possibility of DSM
page faults by sending all a thread’s data along with the
thread at migration time.

Clearly, withn threads per processor,s bytes per thread,
andp processors, the isomalloc approach uses at leastnsp
bytes of address space. For 10 threads per processor, 1MB
of data per thread, and 1000 processors, this amounts to 10
gigabytes of address space! But luckily we can use the vir-
tual memory hardware to avoid using such a large amount
of physical memory. The system callmmapallows individ-
ual pages of program virtual address space to be assigned
physical memory, so on each processor we assign physical
memory only to the addresses in use by local threads. Ad-
dresses used by all remote threads are claimed only in prin-
ciple, but never actually allocated physical memory unless
that remote thread migrates in.

The original PM2 required applications to be modified to
call the special memory allocation routines isomalloc and
isofree, which was a burden on developers and was not fea-
sible when linking with a third-party library. In our runtime
system, we extended this approach by overriding the system
malloc/free routines to use the new isomalloc/free when it
is called within a thread. Of course, malloc/free called from
outside the threading context (e.g. by the communication
layer of the runtime system) is still directed to the normal
system version of malloc/free. This approach thus allows
unmodified applications to use migratable thread memory
for their heap data.

Figure 2. Migrating a thread stack allocated
with isomalloc.

6



Thread X86 IA64 Opteron Mac OS X IBM SP SUN Alpha BG/L Windows

Stack Copy Yes Maybe Yes Maybe Yes Yes Yes Maybe Yes
Isomalloc Yes Yes Yes Yes Yes Yes Yes No Maybe

Memory Alias Yes Yes Yes Yes Yes Yes Yes Maybe Maybe

Table 1. Portability of current implementations of migratable threads. “Yes” means we have im-
plemented this technique. “Maybe” indicates there are no theoretical problems, but no existing
implementation. “No” indicates the technique is impossible on this machine.

Since one thread’s data is always allocated at the same
addresses inside the isomalloc region, a thread can be mi-
grated simply by copying all its data to the new processor—
pointers within and between the thread’s stack and heap
need not be modified. Because we only allocate physi-
cal memory to local threads, the physical memory usage
on each processor is modest. Unlike stack-copy threads,
no data needs to be moved when switching threads, and
multiple threads can run simultaneously, which allows the
straightforward exploitation of SMP machines.

However, isomalloc stacks have the disadvantage that
they consume virtual address space oneachprocessor pro-
portional to the total number of threads onall processors.
32-bit machines only have 4 GB of virtual address space, of
which a substantial fraction is already occupied by the op-
erating system, shared libraries, and other machinery. Even
if the entir 32-bit address space were available for thread
stacks, if each thread uses 1 megabyte, there would only be
room for 4,096 threads. 64-bit machines, by contrast, nor-
mally have terabytes of virtual memory space available, and
so never suffer from this problem.

Unfortunately, machines today continue to be con-
structed with high processor counts using the simplest,
cheapest parts available, which today are 32-bit micropro-
cessors. Large 32-bit x86 Linux clusters are commonplace;
and the Blue Gene/L machine built by IBM for LLNL con-
sists of 128K processors, each of which is a 32-bit PowerPC
derivative. On this kind of machine, virtual address space
usage quickly becomes a significant impediment to the use
of isomalloc-based migratable threads. This motivated us to
design a new approach to reduce the usage of virtual address
space which is described next.

3.4.3 Memory Aliasing Stacks

As a complement to the isomalloc approach, we have de-
signed and implemented an alternative implementation that
uses much less virtual address space, and so can scale on
large 32-bit machines. The idea is simple: accelerate stack-
copying threads by simulating the copy using the virtual
memory hardware. Like stack-copying threads, in this ap-
proach all stacks are executed from the same address. How-

ever, to switch in a new thread, we simply map the new
thread’s stack onto the pages at the stack address by call-
ing mmap, rather than actually copying the stack data. That
is, each thread’s data is stored in separate pages of physical
memory. To run a thread, we first map the thread’s data into
the common virtual address space with a memory mapping
call as shown in Figure 3, then execute the thread.

Figure 3. Memory-aliasing stacks

The advantage of this approach is that only one stack-
size of virtual address space is used, which allows this tech-
nique to be used even on machines with very limited address
space. However, since each context switch involves an ex-
tra mmapsystem call, the performance of memory aliasing
stacks is not as good as that of the isomalloc-based threads.
However, because no data is actually copied, the perfor-
mance of memory aliasing stacks is much better than the
stack-copying thread. Like the stack copying threads, this
technique has the same disadvantage that only one thread
is allowed to be active in each address space. Section 4.2
compares the performance of these three thread migration
techniques.

3.4.4 Thread Migration Portability

Table 1 illustrates the portability of our implementation
of each thread migration technique on various platforms.

7



Stack copying threads are portable to many platforms in-
cluding even Windows. The only restriction on stack copy
threads is the requirement that the system stack frames on
all processors begin at the same base address. In practice,
however, our implementation of stack copying threads is
based on QuickThreads which has not been ported to the
IA64. By contrast, isomalloc and memory aliasing stack
thread migration mechanisms work on all machines ex-
cept for those where themmapsystem call is unavailable,
for example Blue Gene/L and Windows. Windows sup-
ports virtual memory with theMapViewOfFileExcall, and
so could be supported with only a small amount of effort.
Blue Gene/L does not have mmap, but we have shown our
scheme for memory aliasing can be supported by adding
a small extension to the BlueGene/L microkernel to allow
user processes to remap their heap data over the stack loca-
tion.

4 Performance

We have examined the practical performance of these
methods for implementing migratable flows of control on
a variety of real machines. The tests were carried out
with both benchmark tests such as NAS Parallel Benchmark
Multi-Zone version [18] and real-world application like a
BigSim parallel simulator [43].

4.1 Number of Flows

We measured the context-switching performance of four
different implementations of flows of control.

• Processes, created using fork() and yielding using
schedyield(). This is an imperfect benchmark,
because some operating systems seem to ignore
schedyield() when called repeatedly, resulting in an
artificially low measurement of the context switching
time.

• Pthreads, created using pthreadcreate() and yielding
using schedyield().

• Cth (Converse Threads) [23], our implementaions
of user-level threads created using CthCreate() and
scheduled using CthYield(). We used the non-
migratable version of these threads.

• AMPI (Adaptive MPI) [16, 15] 2 user-level threads
created by the AMPI runtime and scheduled using
the AMPI routine MPIYield(). These are migratable
threads, implemented using the isomalloc stack allo-
cation approach based on the Cth threads, although no
migrations actually occur.

2An implementation of MPI that runs each MPI process in an AMPI
thread.

We ran our experiments on a variety of machines. We
report context switch times as the time per flow of control
per context switch.

• Linux, on a typical x86 laptop, with a 1.6 GHz Pen-
tium M running Linux 2.4.25/glibc 2.3.3 (Red Hat 9).
Context switch time is shown in Figure 4.

• Mac OS X, on Turing cluster at University of Illinois,
each node has 2GHz G5 processors and 4 GB of RAM.
Context switch time is shown in Figure 5.

• Sun Solaris, with a 700MHz SunBlade 1000 worksta-
tion running Solaris 9. Context switch time is shown
in Figure 6.

• IBM SP, on the production machine cu.ncsa.uiuc.edu,
with one 1.3GHz Power4 ”Regatta” node running
A/IX 5.1. Context switch time is shown in Figure 7.

• HP/Compaq Alpha, on the production machine
lemieux.psc.edu, with one 1 GHz ES45 AlphaServer
node running Tru64 Unix. Context switch time is
shown in Figure 8.

Our experiments have shown there is a wide variation in
the limitations and performance of these methods on dif-
ferent machines. In general, the user-level threads (Cth) on
most of these machines have the fastest context switch time
except on IBM SP and Alpha machines. On these machines
except IBM SP, the context switch time of the user-level
threads tends to increase slowly as the number of flows in-
creases.

C
on

te
xt

 S
w

itc
h 

Ti
m

e 
(u

s)

0

1

2

3

4

5

Number of Flows
1 10 100 1000 10000 100000

Process
Pthread
AMPI
Cth

Figure 4. Context switching time vs. number
of flows on a x86 Linux machine.

Table 2 illustrates approximate practical limitations (on
stock systems). It shows the approximate maximum num-
ber of processes a user can create in a processor and the

8



Flow of control Limiting Factor Linux Sun IBM SP Alpha Mac OS IA-64

Process ulimit/kernel 8000 25000 100 1000 500 50000+
Kernel Threads kernel 250 3000 2000 90000+ 7000 30000+
User-level Threads memory 90000+ 90000+ 15000 90000+ 90000+ 50000+

Table 2. Approximate practical limitations (on stock systems) for various methods to implement flow
of control.

C
on

te
xt

 S
w

itc
h 

Ti
m

e 
(u

s)

0

2

4

6

8

10

12

14

16

18

20

Number of Flows
1 10 100 1000 10000 100000

Process
Pthread
AMPI
Cth

Figure 5. Context switching time vs. number
of flows on a Mac Apple G5 machine.

C
on

te
xt

 S
w

itc
h 

Ti
m

e 
(u

s)

0

4

8

12

16

20

24

Number of Flows
1 10 100 1000 10000 100000

Process
Pthread
AMPI
Cth

Figure 6. Context switching time vs. number
of flows on a Sun Solaris machine.

maximum number of threads a user can create in a process.
As we can see, an unmodified Linux Red Hat 9 machine
can spawn less than 256 pthreads in one process; while the
per-user process limit on our IBM SP was only 100 pro-
cesses. Both of these limitations can be extended with only
a small amount of system administrator effort, but this ef-

C
on

te
xt

 S
w

itc
h 

Ti
m

e 
(u

s)
0

1

2

3

Number of Flows
1 10 100 1000 10000 100000

Process
Pthread
AMPI
Cth

Figure 7. Context switching time vs. number
of flows on an IBM SP machine. This is a
16-way SMP node. We believe the low times
for processes and threads are due to the OS
ignoring our repeated sched yield() calls.

C
on

te
xt

 S
w

itc
h 

Ti
m

e 
(u

s)

0

1

2

3

4

5

Number of Flows
1 10 100 1000 10000 100000

Process
Pthread
AMPI
Cth

Figure 8. Context switching time vs. number
of flows on Alpha machine. This is a 4-way
SMP node. Again, process and thread switch-
ing numbers may be unrealistically low.

fort is likely beyond the reach of a typical parallel user. In
general, processes and kernel threads were limited to a few

9



thousand, with only the Alpha allowing more than 5000
threads at a time and IA-64 without such limitation. By con-
trast, we could create tens of thousands of user-level threads
easily on all platforms.

4.2 Stack Size

We also examined the effect the stack size has on the mi-
gratable thread context switching time. We examined three
migratable thread methods, as described in detail in Sec-
tion 3.4: stack copying threads, isomalloc threads, and our
new memory aliasing threads. As our results in Figure 9
show, stack copying becomes unusably slow if more than
20KB of stack data is used. Isomalloc threads are the fastest
overall, and show no dependence on the amount of stack
data in use. Memory aliasing stacks took about 4us per
context switch, which is substantially slower than isomal-
loc threads, and the time grows with larger stacks although
very slowly. Neverthless, memory aliasing stacks can pro-
vide the small virtual memory footprint of stack copying,
but (especially for larger stacks) with much faster context
switching. It is suitable for applications with very large
number of threads running on parallel machines with only
32-bit address space (e.g. BlueGene/L), where isomalloc
threads may quickly run out of virtual address space.

 0.1

 1

 10

 100

 1000

 10000

 100000

 10000  100000  1e+06

C
on

te
xt

 S
w

itc
h 

Ti
m

e 
(u

s)

Stack Size (bytes)

Stack Copy
Memory Alias

Isomalloc

Figure 9. Context switching time vs. stack
size on a x86 Linux machine. Various
amounts of stack space from 8KB to 8MB
were consumed using alloca().

4.3 Minimal Context Switching

We have determined a lower bound on the number of
instructions required to explicitly context switch two user-
level threads, as initiated by a subroutine call to a library’s
switch routine. Because the switch routine is a subroutine,

this means only the saved registers defined in the architec-
ture’s subroutine calling convention need actually be saved
and restored—scratch registers will automatically be saved
and restored by the compiler, just like at any subroutine call.

This observation makes it possible to write extremely ef-
ficient user-level thread switch routines, particularly for to-
day’s popular x86 and x86-64 CPUs.3 Figure 10 shows the
minimum correct thread swap routines for 32 and 64-bit x86
CPUs. Note that on x86, the floating point registers must
be empty before making a subroutine call, so the compiler
will already save and restore floating point registers when
needed.

The subroutines in Figure 10 can swap user-level threads
in 16ns (32-bit mode) and 18ns (64-bit mode) on a 2.2GHz
Athlon64. Of course, a real thread library also requires a
scheduling component to decide which thread to swap in
when another thread suspends, but for many applications
thread scheduling can be very simple—for example, a cir-
cular linked list of runnable threads.

swap64:#(old,new)
# Save registers
push %rdi
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
#Save old stack
mov %rsp,(%rdi)
#Load new stack
mov (%rsi),%rsp
# Restore regs
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbx
pop %rbp
pop %rdi 
ret

swap32:#(old,new)
mov 4(%esp),%eax 
mov 8(%esp),%ecx 
# Save registers
push %ebp
push %ebx
push %esi
push %edi
# Save old stack
mov %esp,(%eax)
# Load new stack
mov (%ecx),%esp 
# Restore regs
pop %edi
pop %esi
pop %ebx
pop %ebp
ret

(a) (b)

Figure 10. Minimal user-level thread context
switching routines for 32-bit (a) and 64-bit
(b) x86 CPUs. AT&T/GNU assembly syntax
shown.

Most user-level thread packages provide far worse per-
formance than this for two reasons. First, real systems of-
ten include multiple layers of scheduling and prioritization
which costs function-call overhead. Secondly, many user-
level threads implementations save and restore far more

3Together 32 and 64-bit x86 architectures provided 68.2% of the
FLOPS in the 2005 Top500 list.

10



state than is necessary, either through fear or ignorance.
In particular, popular implementations of swapcontext and
setjmp/longjmp (often used to implement user-level thread-
ing) save and restore all registers, including scratch regis-
ters. Worse, they often include system calls to save and re-
store the signal mask, even though very few scientific appli-
cations manipulate signals at runtime. If a user-level thread
context switch involves even one system call, most of the
speed advantage of user-level threads is lost. This is because
a system call involves saving application registers when en-
tering kernel space and restoring application registers when
leaving kernel space, so the kernel could just as quickly per-
form a process switch by simply saving the registers of one
process and restoring the registers of a different process!

4.4 Application — Parallel Simulator

BigSim [43, 44] is a parallel simulator developed on top
of our Charm++ runtime system. It is capable of predicting
performance of parallel applications on a massively parallel
machine with petascale performance using an existing par-
allel machine with only hundreds of processors even before
the target machine is built. Such simulation requires that
one physical processor to simulate hundreds or even thou-
sands of processors of the simulated machine, hence creat-
ing the scenarios of running multiple flows-of-control, one
for simulating each target processor, on a simulating pro-
cessor.

In a typical simulation, we simulated a Blue Gene like
machine with 200,000 processors running a molecular dy-
namics (MD) simulation code. Running the test on 4 pro-
cessors requires that each processor simulate 50,000 sepa-
rate target processors, which clearly is not feasible on most
machines using either processes or kernel threads. But by
using user-level threads, we were able to simulate 50,000
target processors using 50,000 user-level threads on just one
real processor.

Figure 11 illustrates the performance of BigSim using
Cth, Converse user-level threads. The test was run on
LeMieux which is 750 Quad AlphaServer ES45 node ma-
chine at Pittsburgh Supercomputing Center (PSC). Each
node is a 4 processor SMP, with 4 Gbytes of memory. We
measured the time taken to simulate one timestep of the MD
simulation using 4 to 64 LeMieux processors. The figure
demonstrates excellent scalability of the simulator in this
test.

4.5 Thread Migration and Load Balancing

The “Multi-Zone” NAS Parallel Benchmark [18] is an
extension to the well-known NPB suite. It involves solv-
ing the application benchmarks LU, BT and SP on various
collections of loosely coupled discrete meshes. It is charac-

Ti
m

e 
pe

r S
te

p(
s)

 

0

2

4

6

8

10

12

14

Number of Emulating Processors 
4 8 16 32 64

Figure 11. Simulation time per step using a
total of 200,000 user-level threads

terized by partitioning the problems on a coarse-grain level
to expose more parallelism and to stress the need for bal-
ancing the computation load. Among these tests, BT-MZ
creates the most dramatic load imbalance, which is used in
our test runs.

We ran the BT-MZ benchmark with Adaptive MPI and
used thread migration for the load balancing. The migrat-
able threads use the isomalloc and swap-global mechanisms
(Section 3.4.2) to allow transparent thread migration with-
out having to change any of the benchmark code. In or-
der for load balancing to be effective, AMPI requires the
number of AMPI migratable threads to be much larger than
the actual number of processors, so that AMPI threads can
migrate from overloaded processors to underloaded ones to
improve load balance.

These tests were run on the Tungsten Xeon Linux clus-
ter at NCSA. This cluster is based on Dell PowerEdge 1750
servers, each with two Intel Xeon 3.2 GHz processors, run-
ning Red Hat Linux and Myrinet interconnect network. Fig-
ure 12 shows the total execution time with various config-
urations of BT-MZ with vs. without load balancing. The
x-axis represents each test case. For example, “A.8,4PE”
indicates that the BT-MZ is compiled withCLASS=Aand
NPROCS=8running with 8 AMPI threads but on 4 actual
processors. Note that same class (A, B, etc) problems have
same problem size. Indeed, for all three class B tests on
8 processors (B.16,8BE, B.32,8PE and B.64,8PE), the exe-
cution times after load balancing are about the same, while
there is a dramatic variation in execution times before load
balancing. This benchmark demonstrates the effect of load
balancing that is made feasible via thread migration.

11



To
ta

l e
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
) 

0

40

80

120

160

200

A.8,4PE A.16,4PE B.16,4PE B.16,8PE B.32,8PE B.64,8PE

Without Load Balancing
With Load Balancing

Figure 12. The NAS BT-MZ benchmark with
and without thread migration for automatic
parallel load balancing.

5 Conclusion

We presented a study of four flow-of-control mech-
anisms that are widely used in parallel programming.
These mechanisms are processes, kernel threads, user-level
threads, and event-driven objects.

Through experiments, we illustrated the practical limita-
tions of using these techniques on a variety of platforms. We
further analyzed the performance of these techniques while
varying parameters such as the number of threads and the
amount of memory used by each thread. We demonstrated
a wide variation in the performance of these flow-of-control
mechanisms in context switching overhead. However, in
general, user-level threads provide both flexible implemen-
tations and scalable performance. This makes user-level
threads an attractive approach for programming parallel ap-
plications with a large number of flows of control.

We also examined approaches to support thread mi-
gration, which is particularly useful for load balancing.
We described several methods for implementing migratable
threads that can be used for load balancing large scale paral-
lel applications. We have implemented these techniques —
stack copying, isomalloc, and memory aliasing stacks — in
the Charm++/Adaptive MPI runtime system [16]. We have
also shown that these techniques can be used on a wide va-
riety of platforms by a variety of real parallel applications.

References

[1] The GNU Portable Threads Library.
http://www.gnu.org/software/pth.

[2] N. Adiga, G. Almasi, G. Almasi, Y. Aridor, R. Barik,
D. Beece, R. Bellofatto, G. Bhanot, R. Bickford, M. Blum-
rich, A. Bright, and J. An overview of the bluegene/l super-
computer, 2002.

[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler activations: Effective kernel support for
the user-level management of parallelism.Transactions on
Computer Systems, 10(1):53–79, Feburary 1992.

[4] G. Antoniu, L. Bouge, and R. Namyst. An efficient and
transparent thread migration scheme in thePM2 runtime
system. InProc. 3rd Workshop on Runtime Systems for Par-
allel Programming (RTSPP) San Juan, Puerto Rico. Lecture
Notes in Computer Science 1586, pages 496–510. Springer-
Verlag, April 1999.

[5] J. Appavoo, M. Auslander, M. Burtico, D. D. Silva,
O. Krieger, M. Mergen, M. Ostrowski, B. Rosenburg, R. W.
Wisniewski, and J. Xenidis. K42: an open-source linux-
compatible scalable operating system kernel.IBM Systems
Journal, 44(2):427–440, 2005.

[6] A. Barak, S. Guday, and R. G. Wheeler. The mosix dis-
tributed operating system. InLNCS 672. Springer, 1993.

[7] K. Barker, A. Chernikov, N. Chrisochoides, and K. Pin-
gali. A Load Balancing Framework for Adaptive and Asyn-
chronous Applications. InIEEE Transactions on Parallel
and Distributed Systems, volume 15, pages 183–192, 2003.

[8] K. J. Barker and N. P. Chrisochoides. An Evaluation of
a Framework for the Dynamic Load Balancing of Highly
Adaptive and Irregular Parallel Applications. InProceed-
ings of SC 2003, Phoenix, AZ, 2003.

[9] J. A. Booth. Balancing priorities and load for state space
search on large parallel machines. Master’s thesis, Univer-
sity of Illinois at Urbana-Champaign, 2003.

[10] R. K. Brunner and L. V. Kaĺe. Adapting to load on work-
station clusters. InThe Seventh Symposium on the Frontiers
of Massively Parallel Computation, pages 106–112. IEEE
Computer Society Press, February 1999.

[11] R. K. Brunner and L. V. Kaĺe. Handling application-induced
load imbalance using parallel objects. InParallel and Dis-
tributed Computing for Symbolic and Irregular Applica-
tions, pages 167–181. World Scientific Publishing, 2000.

[12] S. Chakravorty and L. V. Kale. A fault tolerant protocol
for massively parallel machines. InFTPDS Workshop for
IPDPS 2004. IEEE Press, 2004.

[13] F. Douglis and J. Ousterhout. Process migration in the sprite
operating system. InProceedings of the 7th International
Conference on Distributed Computer Systems, pages 18–25,
1987.

[14] E. A. Hendriks. Bproc: The beowulf distributed process
space. In16th Annual ACM International Conference on
Supercomputing. ACM Press, 2002.

[15] C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI. InPro-
ceedings of the 16th International Workshop on Languages
and Compilers for Parallel Computing (LCPC 2003), LNCS
2958, pages 306–322, College Station, Texas, October 2003.

[16] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé. Perfor-
mance evaluation of adaptive MPI. InProceedings of ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming 2006, March 2006.

12



[17] J.Frey, T.Tannenbaum, I.Foster, M.Livny, and S.Tuecke.
Condor-G: A computation management agent for multi-
institutional grids. InTenth IEEE Symposium on High Per-
formance Distributed Computing (HPDC10), 2001.

[18] H. Jin and R. F. V. der Wijngaart. Performance characteris-
tics of the multi-zone nas parallel benchmarks. InProceed-
ings of the International Parallel and Distributed Processing
Symposium (IPDPS), 2004.

[19] R. Jyothi, O. S. Lawlor, and L. V. Kale. Debugging support
for Charm++. InPADTAD Workshop for IPDPS 2004, page
294. IEEE Press, 2004.

[20] L. V. Kalé. The virtualization model of parallel program-
ming : Runtime optimizations and the state of art. InLACSI
2002, Albuquerque, October 2002.

[21] L. V. Kalé. Performance and productivity in parallel pro-
gramming via processor virtualization. InProc. of the First
Intl. Workshop on Productivity and Performance in High-
End Computing (at HPCA 10), Madrid, Spain, February
2004.

[22] L. V. Kale and M. Bhandarkar. Structured Dagger: A Co-
ordination Language for Message-Driven Programming. In
Proceedings of Second International Euro-Par Conference,
volume 1123-1124 ofLecture Notes in Computer Science,
pages 646–653, September 1996.

[23] L. V. Kale, M. Bhandarkar, R. Brunner, and J. Yelon. Mul-
tiparadigm, Multilingual Interoperability: Experience with
Converse. InProceedings of 2nd Workshop on Runtime Sys-
tems for Parallel Programming (RTSPP) Orlando, Florida -
USA, Lecture Notes in Computer Science, March 1998.

[24] L. V. Kale and S. Krishnan. Charm++: Parallel Program-
ming with Message-Driven Objects. In G. V. Wilson and
P. Lu, editors,Parallel Programming using C++, pages
175–213. MIT Press, 1996.

[25] L. V. Kale and J. Yelon. Threads for Interoperable Parallel
Programming. InProc. 9th Conference on Languages and
Compilers for Parallel Computers, San Jose, California, Au-
gust 1996.

[26] D. Keppel. Tools and techniques for building fast portable
threads packages. Technical Report UWCSE 93-05-06, Uni-
versity of Washington Department of Computer Science and
Engineering, May 1993.

[27] D. Knuth. The Art of Computer Programming, volume 1.
Addison-Wesley, 1997.

[28] O. S. Lawlor and L. V. Kaĺe. Supporting dynamic parallel
object arrays.Concurrency and Computation: Practice and
Experience, 15:371–393, 2003.

[29] M. Litzkow and M. Solomon. Supporting checkpointing and
process migration outside the unix kernel. InUsenix Con-
ference Proceedings, pages 283–290, January 1992.

[30] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler,
and S. Zhou. Process migration.ACM Computing Surveys,
32(3):241–299, 2000.

[31] J. Mukherjee and S. Varadarajan. Weaves: A framework
for reconfigurable programming.International Journal of
Parallel Programming, 33(2-3):279–305, 2005.

[32] J. C. Phillips, R. Brunner, A. Shinozaki, M. Bhandarkar,
N. Krawetz, L. Kaĺe, R. D. Skeel, and K. Schulten. Avoiding
algorithmic obfuscation in a message-driven parallel MD
code. InComputational Molecular Dynamics: Challenges,

Methods, Ideas, volume 4 ofLecture Notes in Computa-
tional Science and Engineering, pages 472–482. Springer-
Verlag, November 1998.

[33] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. NAMD:
Biomolecular simulation on thousands of processors. In
Proceedings of SC 2002, Baltimore, MD, September 2002.

[34] Sayantan Chakravorty, Celso Mendes and L. V. Kale. Proac-
tive fault tolerance in large systems. InHPCRI Workshop in
conjunction with HPCA 2005, 2005.

[35] W. W. Shu and L. V. Kaĺe. A dynamic load balancing strat-
egy for the Chare Kernel system. InProceedings of Super-
computing ’89, pages 389–398, November 1989.

[36] D. S. T. G. Mattson and S. T. Wheat. A teraflop supercom-
puter in 1996: the asci tflops system. InProceedings of the
International Parallel Processing Symposium, 1996.

[37] S. Tatham. Coroutines in c, 2005.
http://www.chiark.greenend.org.uk/s̃gtatham/coroutines.html.

[38] N. Williams. An implementation of scheduler activations on
the netbsd operating system, 2002.

[39] T. Wilmarth and L. V. Kaĺe. Pose: Getting over grainsize
in parallel discrete event simulation. In2004 International
Conference on Parallel Processing, pages 12–19, August
2004.

[40] T. L. Wilmarth, G. Zheng, E. J. Bohm, Y. Mehta, N. Choud-
hury, P. Jagadishprasad, and L. V. Kale. Performance pre-
diction using simulation of large-scale interconnection net-
works in pose. InProceedings of the Workshop on Prin-
ciples of Advanced and Distributed Simulation, pages 109–
118, 2005.

[41] G. Zheng.Achieving High Performance on Extremely Large
Parallel Machines: Performance Prediction and Load Bal-
ancing. PhD thesis, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, 2005.

[42] G. Zheng, C. Huang, and L. V. Kalé. Performance evaluation
of automatic checkpoint-based fault tolerance for ampi and
charm++. ACM SIGOPS Operating Systems Review: Op-
erating and Runtime Systems for High-end Computing Sys-
tems, 40(2), April 2006.

[43] G. Zheng, G. Kakulapati, and L. V. Kalé. Bigsim: A paral-
lel simulator for performance prediction of extremely large
parallel machines. In18th International Parallel and Dis-
tributed Processing Symposium (IPDPS), Santa Fe, New
Mexico, April 2004.

[44] G. Zheng, A. K. Singla, J. M. Unger, and L. V. Kalé. A
parallel-object programming model for petaflops machines
and blue gene/cyclops. InNSF Next Generation Systems
Program Workshop, 16th International Parallel and Dis-
tributed Processing Symposium(IPDPS), Fort Lauderdale,
FL, April 2002.

13


