
Interpolation-Friendly Soft Shadow Maps

Orion Sky Lawlor∗

Department of Computer Science, University of Alaska at Fairbanks

Abstract

We present Penumbra Limit Maps, a technique for ex-
tracting soft shadows from an modified shadow map. The
shadow representation used by our method has excellent
interpolation properties, allowing the shadow boundary to
be rendered with sub shadowmap-pixel accuracy, which
partially mitigates the resolution problems common to
shadow map methods. Unlike similar shadow map meth-
ods, our method includes both inner and outer penum-
brae, and is in fact physically correct for the simplest case
of a straight object edge and infinitely distant extended
light source. At object corners or where multiple object
edges overlap, our method is no longer physically ex-
act, but still gives plausible results. Finally, we show the
method can be implemented naturally and efficiently on
programmable graphics hardware.

Keywords: soft shadows, shadow map, GPU.

1 Introduction

Shadows are a key visual cue that allows viewers to bet-
ter understand the geometry of a rendered scene. Direct
light, such as sunlight, is often approximated by a point
light source, which casts a hard-edged shadow. But in re-
ality an area light source casts a soft shadow, with a fully
black umbra surrounded by the partially bright penumbra.
This penumbra region, which expands and softens with
increasing distance from the object, provides an impor-
tant distance cue. Even for a point light source, soft shad-
ows can be used to inexpensively antialias hard shadow
boundaries.

A simple scene consisting of 59,000 polygons rendered
in realtime using penumbra limit shadows is shown in Fig-
ure 1. For this image, the shadow map was prepared in
software at 256x256 resolution, which took 77ms using a
depth image propagation technique. The scene can then

∗Presenting author. Author email: olawlor@acm.org. Author postal
address: 2380 Steese Hwy, Fairbanks, Alaska 99712-1701. Phone 1 907
474-7678 or fax 1 907 474-5030. Submitted to the 2006 International
Conference on Computer Graphics & Virtual Reality (CGVR’06).

Figure 1. A 59K-polygon scene with soft shadows rendered via a
256x256 penumbra limit map on graphics hardware.

be rendered on graphics hardware at 23fps. Without shad-
ows the same scene renders at 26fps.

1.1 Related Shadow Work

There are three main classes of techniques to compute
shadows in computer graphics. Raytracing can trivially
determine if a light source is visible from a point and
can hence determine extremely accurate shadow bound-
aries. Shadow volumesare a screen-space technique
which extrudes, rasterizes, and counts signed object sil-
houette crossings for each pixel—visible surfaces that lie
within a nonzero number of silhouettes are in shadow.
Finally, shadow maps[17] rasterize the scene from the
light source’s point of view, and store the depth to the
first occluder—objects beneath the first occluder are in
shadow. Broadly, raytracing is difficult to implement
efficiently, shadow volumes become fillrate-bound for
objects with complicated silhouettes such as trees, and
shadow maps display aliasing and resolution problems.

Figure 2 shows a cross section of an occluder edge cast-
ing a soft shadow. The “inner penumbra” is the portion of
shadow where part but less than half of the light source
is visible, while the “outer penumbra” is the portion of
shadow where more than half of the light source is visi-
ble, but not all.

The literature abounds with interesting methods for
computing soft shadows, the oldest of which are meth-
ods derived for global illumination [13]. Raster-type
soft shadow methods range from Reeves’ venerable shad-
owmap filtering [15] to recent work on GPU micro-
occluders [3]. Other approaches include lighting convo-
lutions evaluated analytically [12] or in the frequency do-
main [16]. Screen space soft shadow approaches include
the Arvo et al flood fill [1].

There exist a variety of methods, including as the
“penumbra wedge” soft shadow volume technique of As-
sarsson [2], that can accurately compute physical penum-
brae. However, few of these techniques are affordable
at interactive rates, especially for objects with high sil-
houette complexity such as foliage, or for multiple light
sources.

A good survey of existing soft shadow modifications to
shadow map techniques is presented by Hasenfratz et al.
[8]. Many methods exist which compute soft shadows as
a combination of several hard shadows, which is equiva-
lent to the raytracing technique of approximating an ex-
tended light source as a collection of point light sources.
The aliasing caused by point sampling results in quantized
or noisy output, which requires as many as thousands of
samples to average away.

A widely cited technical report by Parker et al [14] in-
troduced an inexpensive and now-common technique for
creating soft shadows, by pasting on fictitious geometry to
make the shadow boundary of all objects fuzzy. Haines’
Shadow Plateaus [7] use a similar silhouette meshing
technique to generate physically correct shadows along a
fixed planar receiver.

Brabec and Siedel [4] show a CPU-based “nearest oc-
cluder” search process based on a standard depth map for
computing soft shadows. Recently de Boer [6] extended
this approach to the GPU, including both inner and outer
penumbra. Much shadow map work can be seen as a
way to precompute the result of this slow nearest occluder
search.

Our work is most similar to the inner penumbra ”single-
sample shadow map” technique of Kirsch and Döllner [9],
who like us precompute a modified shadow map and eval-
uate the shadow using a fragment program. Chan and
Durand’s outer penumbra “smoothies” technique [5] also
begins with the usual shadow depth map, but like our

Umbra

Occluder

Area Light Source

Fully Lit

Penumbra

Outer Inner

Figure 2. Cross-section of a simple soft shadow scene that can
be exactly represented by one Penumbra Limit Map.

technique adds additional buffers to store the distance to
the soft shadow. Wyman and Hansen’s (outer) penum-
bra maps [18] are similar. None of these techniques han-
dle both inner and outer penumbrae, and as we show in
Section 4 Penumbra Limit Maps are capable of much
smoother results at low shadowmap resolutions.

2 Penumbra Limit Shadows

In this paper, we present a soft shadow representation
in the style of shadow maps. For each light source, the
shadow map is filled with the shadow casting geometry
of the scene, rendered with the camera at the center of
each light source. During rendering, each light source’s
shadow map is queried to determine the illumination at a
pixel.

We first derive the illumination for the simplest 2D
case: an infinitely distant light source with a given an-
gular extent, and a half-infinite occluder with edge lying
perpendicular to the incoming light. Our shadowmap pa-
rameterization runs along parallel lines pointing directly
toward the light source, with increasing depth measured
downward and away from the light.

As shown in Figure 3 (A), we compute and store two
depths for each shadow map pixel. The first depth,c, is the
depth of the occluder corner that casts the shadow. This
value only changes when switching between soft shadows
cast by different objects or different parts of the same ob-
ject. The second depth we store,p, is the penumbra limit
depth. In the outer penumbra, which we consider first,p is
the actual depth to the start of the penumbra, and is hence
always less thanc and decreases as we move away from
the occluder.

When rendering, we want to find the fraction of the

2

Occluder

(A) (B)

Area Light Source

w

v

d

w

v

a

c

p
z−c

p−c

(C)

Target Point

Shadow
Map
Ray

Penumbra
Limit

z

Figure 3. Derivation of penumbra limit equations for an infinitely distant area light source. Similar triangles relate d
a

to z−c
p−c

light source visible from some target point. Call the depth
of that pointz. As shown in Figure 3 (B), two similar
right triangles are formed by the target point and occluder
corner, and the occluder corner and light source hit point.
The light source is infinitely distant, but we can imagine a
scaled-down version hovering a distancev directly above
our edge with visible lengthd. For the moment consider
only the right half of the light source, and take the hori-
zontal target/occluder distance asw. Then by similar tri-
angles

w

z − c
=

d

v
As shown in Figure 3 (C), another two similar right tri-

angles are formed by the penumbra limit and occluder cor-
ner, and the occluder corner and light source corner. Tak-
ing the right-half light source length asa, again by similar
triangles

p− c

w
=

v

a
Now multiplying the two above equations,

p− c

z − c
=

d

a

Note thatw andv cancel, leavingd
a on the right hand

side. This is the fraction of the right half of the light
source that is visible. Thus for the outer penumbra, the to-
tal fractionl of the entirelight source that is visible from
the target point is just

l =
1
2

+
1
2

d

a
=

1
2

+
1
2

p− c

z − c

Now consider the inner penumbra. By mirror symme-
try, now d

a gives the fraction of the left half of the light
source that is notvisible. This means in the inner penum-
bra, there’s just a sign change to

l =
1
2
− 1

2
p− c

z − c

To uniformly support inner and outer penumbrae, we
can simply change our definition ofp in the inner penum-
bra. We choose to define a signed distancepi = −(p− c)
in the inner penumbra, andpi = +(p − c) in the outer
penumbra. Then the fraction of the light source visible in
both the inner and outer penumbrae is exactly represented
by

l =
1
2

+
1
2

pi

z − c
(1)

Hence overall we store and interpolatepi and c in
the shadow map, and when rendering geometry evaluate
Equation 1 to find the amount of light reaching a rendered
pixel at depthz.

Our rather strange definition for the penumbra limit sur-
facepi has a number of benefits. First, it means we need
not store or test whether each rendered pixel is is in the
inner or outer penumbra. Second, because the surfacep
around one occluder edge forms an inverted “V” centered
on c, it has a sharp crease which is difficult to sample and
interpolate properly. However, the surfacepi around a
straight occluder edge is simply a plane. This makes bi-
linear interpolation inpi exact, and hence works well even
at very low shadowmap resolutions, as we quantitatively
evaluate in Section 4.

The largest benefit of this definition ofpi is that the
midpoint of the shadow,l = 1

2 , lies along the zero-
crossing line of the planepi. This means unlike with
other shadow representations, with penumbra limit shad-
ows the shadow cast by a smooth surface can be located
very precisely–much more precisely than a shadowmap
pixel!

2.1 Upper and Lower Limits

The light source visibility can only be computed via the
soft shadow equations above when the target point is ac-

3

�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������

���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������

(A)

c

pi

(B)

c

g

pi

b

Figure 4. Light source visibility l at left (A) and geometry-clamped
visibility lg at right (B) for occluder depth c (magenta line), geome-
try upper limit g (dashed line), lower limit b (blue line), and penum-
bra limit depth pi (black line). Light coming from above creates a
soft shadow from a cylindrical occluder on the right.

tually in soft shadow. Luckily, any time the target point
is below the occluder depthc, Equation 1 will give the
correct sign for the light visibilityl, so graphics hardware
can computel correctly via the graphics card’s cheap sat-
urating arithmetic—that is, we computel normally, then
clamp to the range[0, 1].

But for target points above the occluder depthc, Equa-
tion 1 gives nonsensical results—note the top of Figure 4
(A). Hence abovec, we need to clamp the visibility to 0
(black) if shadowed by the geometry or to 1 (white) when
above the geometry; similarly, when below deeper geom-
etry, we must clamp to black. To do this, we store the
uppermost geometry (or soft shadow) depthg and lower-
most soft-shadow depthb in the shadow map, then com-
pare the target depthz with both values and set the light
visibility appropriately, which results in Figure 4 (B). So
overall the fraction of the light source we can see is:

lg =


1 if z < g,

0 else ifz < c,

0 else ifz > b,

sat(1
2 + 1

2
pi

z−c) otherwise.

Since graphics hardware has poor branching performance,
we implement this function using one set-if-less-than in-
struction to comparez with c, g, and b, then scale the

TEMP shadowmap, L, cmp, Lg, illum;
ATTRIB shadowcoord=fragment.texcoord[1];
TEX shadowmap, shadowcoord, texture[1], 2D;
MAD L.b, shadowmap.a, 2.0, -1.0; # Unpack1

2pi

SUB L.a, shadowcoord.z, shadowmap.r; #z − c
RCP L.a, L.a; # L.a =1.0/(z − c)
MAD SAT L, L.b, L.a, 0.5; #l from Equation 1
SLT cmp, shadowcoord.z, shadowmap; # Comparez
DPH cmp, cmp,{-2,4,1,-1}; # Three ”if” statements
ADD SAT Lg, L, cmp; #lg from Equation 2
TEX illum, Lg, texture[2], 1D; # Illumination table

Figure 5. An OpenGL ARBfragment program to compute illu-
mination using a Penumbra Limit Map. texture[1] is the penum-
bra limit shadow map as generated in Section 3; texture[2] is the
visibility-to-illumination table as computed in Appendix A.

compared values using a single dot product. Because sat-
urating limits the input and output range to[0, 1], the fol-
lowing is always equivalent to thelg above:

lg = sat(sat(
1
2

+
1
2

pi

z − c
) + 4(z < g)+

− 2(z < c) + (z < b)− 1) (2)

The visible fraction of the light sourcelg is con-
verted to an actual illumination value using a visibility-
to-illumination lookup table as described in Appendix A.

2.2 Graphics Hardware Implementation

We store the occluder depthc in the red channel, geometry
upper limitg in the green channel, geometry lower limitb
in the blue channel, and14pi+ 1

2 in the alpha channel of the
penumbra limit shadow map. Since all four quantities are
just unsigned depths, we can afford to use even standard 8-
bit per component RGBA textures, although 16-bit integer
or float textures have better range and precision. Since all
three quantities vary smoothly over the shadow map, we
get excellent results by sampling the shadow map texture
using ordinary bilinear interpolation.

To render geometry using penumbra limit illumination,
we begin by computing the shadow map coordinates and
target depthz in a vertex shader. Then in a pixel shader
we evaluate Equation 2 to computelg, the fraction of the
light source that is visible. Once the shadow map is cre-
ated, like most shadow map techniques penumbra limit
shadows create zero additional geometry—the rendering
cost is purely arithmetic and texturing in the pixel shader.
Our implementation in Figure 5 samples the shadow map

4

Figure 6. Scene lit from above by a striped colored light source.

and computes a target pixel’s penumbra limit illumination
using just nine pixel shader instructions.

3 Penumbra Limit Generation

The preceding section describes how to evaluate penum-
bra limit shadows at a particular point given the occluder
and penumbra limit depths. This section describes how
we compute those depths. Along a single silhouette edge
at a depthe, the occluder depth is exactlyc = e. At a
signed horizontal distancew from the edge, the penum-
bra limit depth can be computed aspi = wsr, wheres is
a shadow map pixel’s horizontal size andr is the “depth
rate” associated with the angular size of the light source,
r = 1.0/ tan(lightAngle/2). Hence the penumbra limit
map is easy to compute exactly along a single occluder
edge.

Since multiple-occluder shadows like those in Figure 6
are too complicated to represent exactly with any single
shadow map, we must determine some approximation for
the shadows cast by multiple occluders. That is, we must
throw away some shadow detail in order to project the
true shadow onto the space of shadows we can represent
with Equation 1. This shadow complexity problem is the
main reason why our method works best for small light
sources—light sources that are too large (for example, an
overcast sky) create many fuzzy overlapping penumbrae
that are difficult to combine along in a single shadowmap
ray.

The most general and reliable approach to the shadow
complexity problem is to first calculate the true shadow
profile (e.g., by dense sampling along each shadow ray)
and then choose shadowing-function parameters to best fit
this known shadow profile. Lokovic and Veach describe
such an approach in detail in Deep Shadow Maps [11].
This approach is ideal for offline computation, but is too
slow to perform at interactive rates.

Occluder
Discontiuity

Occluder
Discontiuity

Occluder
Discontiuity

��������������
��������������

����������
���������� �������

�������
���������� �������

�������
����������

	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
��

��

(A) (B)

i i

(C)

i
p

c c
p p

c

g

b

Figure 7. When occluders face each other (A), interpolating c
and pi in the shadow map works quite well. But when occluders
are on top of each other (B), interpolation can cause ugly artifacts
when switching between occluders. The same occluders have no
artifacts (C) when the occluder discontinuity is clamped between
the upper and lower limits g and b. Only ten shadowmap pixels
are visible; the pixel centers are indicated with tick marks at the
figure bottom.

For scenes consisting mostly of smooth objects,
shadow-casting object silhouettes can be explicitly enu-
merated and rendered entirely on the graphics card as de-
scribed in the next section. But for scenes consisting of
rough objects like foliage silhouette enumeration can be
expensive, and for objects like particle systems the sil-
houette is not even well defined. Hence sometimes better
results can be obtained by expanding a rasterized depth
image into a Penumbra Limit Map, as we describe in an-
other work [10].

3.1 GPU Penumbra Limit Generation

The most GPU-friendly way to approximate multiple oc-
cluders is to extract each occluder’s shadow silhouette,
and expand and rasterize the soft shadow cast by that sil-
houette into the Penumbra Limit Map. This is exactly the
same approach taken by Chan and Durand’s Smoothies
[5], but for Penumbra Limit Maps includes both the inner
(inside the silhouette) and outer (beyond the silhouette)
penumbrae.

The simplest heuristic for combining the occluder and
penumbra limit depths from two different silhouettes is
“highest penumbra limit wins”. This means that mov-
ing down a shadowmap ray, we only consider the first
penumbra we hit—penumbrae from deeper occluders are
ignored. This can be implemented on graphics hardware
by rasterizing the silhouettes with the z-buffer depth equal
to the depth of the penumbra limit surface, and keep-

5

Figure 8. Stanford Bunny rendered using a 256x256 RGBA8
Penumbra Limit Map generated entirely on graphics hardware.
Note self-shadowing errors at shadow of tip of right ear and base,
and silhouette leakage at shadow of base of left ear.

ing the highest z-buffer value as usual. We find it helps
penumbra limit interpolation to bias up the z-buffer depth
to expand the penumbra limit over a few extra pixels.

Where the soft shadows of two occluders with differ-
ent depths overlap, interpolation can cause artifacts. Con-
sider the case where a small object lies entirely above a
large object. The large object’s soft shadow causes no
problems, but if the small object casts a soft shadow, it
will cut down through the large object’s center, casting
light through the center of the object, as shown in Figure 7
(B). Worse, at the transition between the small and large
objects’ penumbrae, the penumbra limit depthpi crosses
over the occluder depthc, which results in a highly visi-
ble erroneous shadow transition. The imperfect solution
we currently use is to clamp away the soft shadows at each
occluder transition, by bringing together the geometry up-
per and lower limitsg andb as shown in Figure 7 (C).

Hence overall we generate each penumbra limit map on
the GPU in three steps:

1. Render all front-facing geometry to the geometry up-
per limit g channel, using the depth buffer to keep the
topmost geometry. So far, this is exactly how normal
shadow maps work.

2. Extrude all silhouette edges into small soft shadow
ribbons, and use the ribbons to rasterize the oc-
cluder depthc and penumbra limitpi along each soft
shadow. We also raise the geometry upper limitg
to match the outer penumbra limit sog does not clip

p
i

c g

Figure 9. Penumbra Limit Map for triangle scene in Figure 11.

away the outer penumbra.

3. Render all back-facing geometry to the geometry
lower limit b channel, but throw away geometry
above or near the occluder depthc to prevent a sur-
face from occluding its own soft shadow.

The penumbra limit map for Figure 8 is computed on
the graphics hardware using this silhouette enumeration
technique. The model consists of 69,451 triangles, and
the silhouette averages about 5,000 edges. We can prepare
a new penumbra limit map using the full geometry and
render the scene with it at 35fps. For a 2,000 triangle
version of the same model, we get 100fps; for a 871K
triangle model, we get 5fps.

4 Shadow Comparison

Figure 11 compares shadow images computed using a
variety of techniques. In the top row, we examine the
shadow cast on the ground plane; the bottom row shows
the difference between this image and the exact soft
shadow. The model is a single triangle skewed up from
the ground, illuminated by an infinitely distant circular
light source directly overhead. The top right triangle cor-
ner touches the ground plane, the top left corner is raised
slightly, and the bottom corner is raised far off the surface.
The actual penumbra limit map used is shown in Figure 9

Figure 10 lists the root-mean-square pixel error (−255
to +255) for each soft shadow algorithm for a variety
of shadow map resolutions. We can see penumbra limit
shadows have excellent performance compared to simi-
lar techniques, especially for low shadowmap resolutions.
Smoothies, and Kirsch and Döllner’s work perform ac-
ceptably at higher resolutions when taking into account
that they only compute one half of the penumbra. Surpris-
ingly, Reeves filtering actually gets less accurate as the
shadowmap resolution increases–this is because Reeves
filtering always creates one-shadowmap-pixel-wide soft

6

Exact Penumbra Limit Smoothies Kirsch & Doellner Reeves Filtering Hard Shadow Map Shadow Volumes 16 Samples

Figure 11. Comparison of soft shadows computed using a variety of techniques. Top row is the shadow, bottom row is the signed
distance to the exact shadow. Smoothies and Kirsch and Döllner are compared with the outer and inner penumbra respectively. The
shadow map resolution is just 32 x 32.

Resolution: 16 32 64 128
Penumbra Limit Maps 11.3 9.0 9.2 8.8
Smoothies 24.7 17.8 16.4 15.3
Kirsch & Doellner 37.2 23.0 15.6 10.9
Reeves Filtering 25.7 26.8 28.5 30.3
Hard Shadow Map 45.5 39.3 35.1 34.2
Shadow Volumes 33.5 33.5 33.5 33.5
16 Samples 12.0 12.0 12.0 12.0

Figure 10. Shadow algorithm RMS pixel error for various shadow
map resolutions (in pixels on a side). Images for 32×32 resolution
are shown in Figure 11.

shadows, which happen to better match the true soft
shadow at low resolutions! The performance of all five
shadowmap techniques was approximately equal ignoring
the shadowmap setup time, but penumbra limit shadows
do have a slightly more complicated shadowmap setup.

Shadow volumes and stochastic sampling do not use
a shadow map, and hence always show the same error.
16 stochastic sample soft shadows were approximately 10
times slower than any other method. The “exact” image
was computed via Monte Carlo raytracing taking 4,096
shadow rays per pixel, which is hundreds of times too
slow for interactive use.

Penumbra limit shadows display a few minor problems.
At the large blurry model corner, penumbra limit shadows
are a bit darker than the exact image. Because of the low
shadowmap resolution, penumbra limit shadows cannot
capture the sharp corner at the top left. For a more com-
plicated model, there might be a few artifacts where soft
shadows overlap. But as claimed, up to depth quantization
error penumbra limit shadows are exact along straight oc-
cluder edges. Unlike with the other shadow map methods,
with Penumbra Limit Maps the impact of the low shad-
owmap resolution is difficult to even discern.

5 Conclusions and Future Work

We have presented Penumbra Limit Maps, an extension
of the shadow map to generate soft shadows on graphics
hardware. This technique produces good results even with
bilinear interpolation, can be physically correct along ob-
ject edges even for arbitrary shadow receivers, and yet is
about as fast as competing techniques.

We have discussed the difficulties with representing
multiple simultaneous soft shadows along a single shad-
owmap ray. A logical extension of this technique would
be to store a series of occluder and penumbra limit depths,
and then combine or choose between them at runtime. It is
also possible a slightly different formulation would more
easily support simultaneous soft shadows.

As presented, our method assumes a purely-radius-
dependent infinitely distant light source assuming a con-
stant surface BRDF. It should be possible to approximate
local light sources using a perspective transform centered
on the light source, which pushes the light source out to
shadow-coordinates infinity. To support a nonsymmet-
ric light source, we would need to store the occluder’s
orientation as well as location—storing this orientation
as an angle,θ, would be straightforward, but would in-
terpolate poorly along the line of0 − 2π wraparound.
A linearly-varying surface BRDF could be handled by
adding a BRDF-rate axis to the (currently 1D) visibility-
illumination table. Similarly, it may be possible to extend
this technique to exactly capture the shadow from multiple
occluders, or occluders with curves or corners, by adding
more axes to the visibility-illumination table.

References

[1] Jukka Arvo, Mika Hirvikorpi, and Joonas Tyystjärvi. Ap-
proximate soft shadows with an image-space flood-fill

7

algorithm. Computer Graphics Forum, 23(3):271–280,
2004.

[2] Ulf Assarson.A Real-Time Soft Shadow Volume Algorithm.
PhD thesis, Chalmers University of Technology, 2003.

[3] Lionel Atty, Nicolas Holzschuch, Marc Lapierre, Jean-
Marc Hasenfratz, Chuck Hansen, and Franois Sillion. Soft
shadow maps: Efficient sampling of light source visibility.
Technical Report RR-5750, INRIA, November 2005.

[4] Stefan Brabec and Hans-Peter Seidel. Single sample soft
shadows using depth maps.Graphics Interface, pages
219–228, 2002.

[5] Eric Chan and Fŕedo Durand. Rendering fake soft shadows
with smoothies.Eurographics Symposium on Rendering,
pages 208–218, 2003.

[6] William de Boer. Smooth penumbra transitions with
shadow maps.ACM Journal of Graphics Tools, 2006. To
appear.

[7] Eric Haines. Soft planar shadows using plateaus.J. Graph.
Tools, 6(1):19–27, 2001.

[8] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas
Holzschuch, and François Sillion. A survey of real-
time soft shadows algorithms. InEurographics, pages
1–20, 2003.

[9] Florian Kirsch and J̈urgen D̈ollner. Real-time soft shadows
using a single light sample.Winter School on Computer
Graphics, 11(1), 2003.

[10] Orion Sky Lawlor. Impostors for Parallel Interactive
Computer Graphics. PhD thesis, University of Illinois at
Urbana-Champaign, December 2004.

[11] Tom Lokovic and Eric Veach. Deep shadow maps. In
SIGGRAPH Proceedings, pages 385–392, August 2000.

[12] Michael D. McCool. Analytic antialiasing with prism
splines. In SIGGRAPH Proceedings, pages 429–436.
ACM Press, 1995.

[13] T. Nishita and E. Nakamae. Half-tone representation of 3-d
objects illuminated by area sources or polyhedron sources.
In IEEE 7th Intl. Computer Sw. & App. Conf. (COMPSAC),
pages 237–242, 1983.

[14] Steven Parker, Peter Shirley, and Brian Smits. Single sam-
ple soft shadows. Technical Report UUCS-98-019, Uni-
versity of Utah, October 1998.

[15] William T. Reeves, David H. Salesin, and Robert L. Cook.
Rendering antialiased shadows with depth maps. InSIG-
GRAPH Proceedings, pages 283–291. ACM Press, 1987.

[16] Cyril Soler and François Sillion. Fast calculation of soft
shadow textures using convolution. InSIGGRAPH Pro-
ceedings, pages 321–332, Jul 1998.

[17] Lance Williams. Casting curved shadows on curved sur-
faces. InSIGGRAPH Proceedings, volume 12, pages 270–
274, August 1978.

[18] Chris Wyman and Charles Hansen. Penumbra maps: Ap-
proximate soft shadows in real-time.Eurographics Sym-
posium on Rendering, pages 202–207, 2003.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fr
ac

tio
n

of
 L

ig
ht

 S
ou

rc
e

Irr
ad

ia
nc

e

Fraction of Light Source Diameter Visible

Parker Sinusoid
Sun (with limb darkening)

Uniform 10 Degree Diameter Disk
Linear 1D Source

Figure 12. Normalized illumination from various light sources oc-
cluded by a straight edge. The graph is odd-symmetric about
(0.5,0.5), since by complementarity f(l) = 1− f(1− l).

A Visibility to Illumination

Equation 1 gives us the fractionl of the diameter of the
light source that is visible at a point. For an infinitesi-
mal, uniform-radiance, 1D line source directly overhead,
this is equal to the fraction of the light that arrives at the
point. But for any other light source, visibility isn’t quite
the same as illumination. That is, covering up the first
10% of the diameter of a disk light source decreases the
delivered illumination by less than 6%, because the por-
tion of the disk we begin covering is fairly narrow.

The fact that for a disk, visibility and illumination have
a nonlinear relationship is well-known, but a large number
of authors [5] [18] [4] [7] have erroneously described the
visibility-illumination relationship as “sinusoidal”. Parker
even gives an analytic expression for this purported sinu-
soid [14]. However, the actual visibility-illumination re-
lationship is not a sinusoid. Though it is easy to derive
the exact relationship for simple shapes [10], we follow
Haines [7] and precompute a visibility-illumination table,
indexed by the linear visibility fractionl.

A visibility-illumination table allows us to exactly rep-
resent the irradiance from any purely radius-dependent
light source (assuming a constant surface BRDF). In par-
ticular, the sun’s colder outer layers cause an intensity
drop of about 50% near the edge of the solar disk. This
“limb darkening” effect flattens the visibility-illumination
curve, as shown in Figure 12. In the images presented
here, we use a table derived from a linear-light image of
the sun, integrated and stored into a 512-entry lookup ta-
ble.

8

