
1

Impostors for Interactive
Parallel Computer Graphics

Orion Sky Lawlor
olawlor@uiuc.edu

2004/4/12

mailto:olawlor@uiuc.edu
mailto:olawlor@uiuc.edu

2

Overview

Impostors Basics
Impostors Research
Parallel Graphics Basics
Parallel Impostors
Parallel Planned Work
Graphics Planned Work

3

Thesis Statement

Parallel impostors can improve
performance and quality for
interactive computer graphics

Impostors are 2D standins for 3D
geometry
Parallel impostors are impostor
images computed on a parallel
server
Interactive means there’s a human
watching and controlling the action
with fast response times

4

Importance of Computer Graphics
“The purpose of computing is insight,
not numbers!” R. Hamming

Vision is a key tool for analyzing and
understanding the world
Your eyes are your brain’s highest
bandwidth input device

Vision: >300MB/s
• 1600x1200 24-bit 60Hz

Sound: <1 MB/s
• 96KHz 24-bit stereo

Touch: <100 per second
Smell/taste: <10 per second

5

Impostors

Fundamentals
Prior Work

6

Impostors
Replace 3D geometry
with a 2D image
2D image fools viewer
into thinking 3D
geometry is still there
Prior work

Pompeii murals
Trompe l’oeil (“trick of
the eye”) painting style
Theater/movie
backdrops

Big limitation:
No parallax

[Harnett 1886]

7

Graphics Cards

Interactive graphics now means graphics hardware

SGI pioneered modern generation (early 1990’s)
Explosion of independent companies (1995)
Consumer hardware vertex processing (1999)
Programmable hardware pixel shaders (2001)
Hardware floating-point pixel processing (2003)

Draws only polygons,
lines, and points

Supports image
texture mapping,
transparent blending

Portable, usable
OpenGL software
interface

8

Graphics Card Performance

t total time to draw (seconds)

α triangle setup time (about 100ns), 1.0/triangle rate

β pixel rendering time (about 2ns), 1.0/fill rate

s area of triangle (pixels)

r rows in triangle

γ pixel cost per row (about 3 pixels/row)

!

Pixel Rendering
Texturing, blending

Triangle Setup
Projection, lighting, clipping, ...

9

Graphics Card: Usable Fill Rate

NVIDIA GeForce 3

Small
triangles

Large
triangles

10

Impostors Technique
For efficient rendering, must use large
triangles; for more detailed rendering, must
use smaller triangles
Impostors can resolve this conflict:

First, render set of small triangles into a large
texture: an impostor
Now we can render impostor texture (on a large
triangle) instead of the many small triangles

Helps when impostors can be reused across
many frames

Works best with continuous camera motion and
high framerate!

Many modifications, much prior work:
[Maciel95], [Shade96], [Schaufler96]

11

Impostors: Example

We render a set of geometry into
an impostor (image/texture)

12

Impostors: Example

We can re-use this impostor in
3D for several frames

13

Impostors : Example

Eventually, we have to update
the impostor

14

Updating: Impostor Reuse
Far away or flat impostors can be reused
many times, so impostors help substantially

R Number of frames of guaranteed reuse

z Distance to impostor (meters)

d Depth flattened from impostor (meters)

∆s Acceptable screen-space error (1 pixel)

Η Framerate (60 Hz)

k Screen resolution (1024 pixels across)

V Camera velocity (20 kmph)

15

Impostors Challenges
Geometry Decomposition

Must be able to cut up world into impostor-type
pieces

• [Shade96] based on scene hierarchy
• [Aliaga99] gives automatic portal method

Update equation tells us to cut world into flat
(small d) pieces for maximum reuse

Update equation shows reuse is low for
nearby geometry

Impostors don’t help much nearby
Use regular polygon rendering up close

Lots of other reasons for updating:
Changing object shape, like swaying trees
Non-diffuse appearance, like reflections

16

Impostors Research

Antialiasing
Motion Blur

17

Rendering Quality: Antialiasing
Real objects can cover only part of
a pixel

Blends object boundaries
Prior Work:

Ignore partial coverage
Aliasing (“the jaggies”)

Oversample and average
Graphics hardware: FSAA
Not theoretically correct; close

Random point samples
[Cook, Porter, Carpenter 84]
Needs a lot of samples:

Integration
Trapezoids
Circles [Amanatides 84]
Polynomial splines [McCool 95]
Procedures [Carr & Hart 99]

Antialiased
filtering

Aliased
point samples

n
σσ ='

18

Antialiased Impostors
Texture map filtering is mature

Very fast on graphics hardware
Bilinear interpolation for nearby
textures
Mipmaps for distant textures
Anisotropic filtering becoming
available
Works well with alpha channel
transparency
[Haeberli & Segal 93]

Impostors let us use texture
map filtering on geometry

Antialiased edges
Mipmapped distant geometry
Substantial improvement over
ordinary polygon rendering

Antialiased
Impostor

19

Antialiased Impostor Challenges
Must generate antialiased
impostors to start with

Just pushes antialiasing up one
level
Can use any antialiasing
technique. We use:

Trapezoid-based integration
Blended splats

Must render with transparency
Not compatible with Z-buffer
Painter’s algorithm:

Draw from back-to-front
A radix sort works well
For terrain, can avoid sort
by traversing terrain
properly

20

Rendering Quality: Motion Blur
Fast-moving objects blur
Prior Work (as before)

Just temporal aliasing

Usual method
Draw geometry shifted
to different times
One shift per pixel of
blur distance
Average shifted images
together using
accumulation buffer

New Idea: fast
exponentiation blur

Draw geometry once
Read back, shift, repeat
No accumulation buffer
needed

21

Normal Motion Blur

prev
frame

cur
frametime

22

Normal Motion Blur

prev
frame

cur
frametime

23

Normal Motion Blur

prev
frame

cur
frametime

24

Normal Motion Blur

prev
frame

cur
frametime

25

Normal Motion Blur

prev
frame

cur
frametime

26

Normal Motion Blur

prev
frame

cur
frametime

27

Normal Motion Blur

prev
frame

cur
frametime

28

Normal Motion Blur

prev
frame

cur
frametime

29

Normal Motion Blur

n shifts
take O(n)
time

prev
frame

cur
frametime

30

Fast Exponentiation Blur

prev
frame

cur
frametime

31

Fast Exponentiation Blur

prev
frame

cur
frametime

32

Fast Exponentiation Blur

prev
frame

cur
frametime

33

Fast Exponentiation Blur

prev
frame

cur
frametime

34

Fast Exponentiation Blur

n shifts
take O(lg n)
time

prev
frame

cur
frametime

35

Impostors Research Summary

Impostors can improve the
rendering quality, not just speed

Antialiasing
Motion Blur

This is possible because
impostors let you process
geometry like a texture

Filtering for antialiasing
Repeated readback for motion blur

36

Parallel Rendering

Fundamentals
Prior Work

37

Parallel Rendering
Huge amounts of prior work in offline
rendering

Non-interactive: no human in the loop
Not bound by framerate: can take seconds to
hours

Tons of raytracers [John Stone’s Tachyon],
radiosity solvers [Stuttard 95], volume
visualization [Lacroute 96], etc
“Write an MPI raytracer” is a homework
assignment
Movie visual effects studios use frame-
parallel offline rendering (“render farm”)

Basically a solved problem

38

Interactive Parallel Rendering

Desktop Machine

Display

100 MB/s
Gig Ethernet

10 GB/s
Graphics Card
Memory

Parallel Machine

39

Interactive Parallel Rendering

Desktop Machine

Display

Cannot compute
frames in parallel
and still display
at full framerate/
full resolution

TOO SLOW!

10 GB/s
Graphics Card
Memory

100 MB/s
Gig Ethernet

Parallel Machine

40

Interactive Parallel Rendering
Humphreys et al’s Chromium (aka Stanford’s WireGL)

Binary-compatible OpenGL shared library
Routes OpenGL commands across processors efficiently
Flexible routing--arbitrary processing possible
Typical usage: parallel geometry generation, screen-
space divided parallel rendering
Big limitation: screen image reassembly bandwidth

• Multi-pipe custom image assembly hardware on front end

[Humphreys et al 02]

41

Interactive Parallel Rendering
Bill Mark’s post-render
warping

Parallel server sends every
N’th frame to client
Client interpolates
remaining frames by
warping server frames
according to depth

[Mark 99]

[Ward 99]

Greg Ward’s “ray cache”
Parallel Radiance server
renders and sends bundles
of rays to client
Client interpolates
available nearby rays to
form image

42

Parallel Impostors

Our Main Technique

43

Parallel Impostors Technique
Render pieces of geometry into
impostor images on parallel server

Parallelism is across impostors
• Fine grained-- lots of potential parallelism
• Geometry is partitioned by impostors anyway

Reassemble world on serial client
• Uses rendering bandwidth of graphics card

Impostor reuse cuts required
network bandwidth to client

Only update images when necessary

Uses the speed and memory of the
parallel machine

44

Client/Server Architecture

Client sits on user’s desk
Sends server new viewpoints
Receives and displays new impostors

Server can be anywhere on network
Renders and ships back new impostors as needed

Implementation uses TCP/IP sockets
CCS & PUP protocol [Jyothi and Lawlor 04]

Works over NAT/firewalled networks

45

Client Architecture
Client should never wait for server

Display existing impostors at fixed framerate
Even if they’re out of date

Prefers spatial error (due to out of date impostor)
to temporal error (due to dropped frames)

Implementation uses OpenGL, kernel threads

46

Server Architecture
Server accepts a new viewpoint from client
Decides which impostors to render
Renders impostors in parallel
Collects finished impostor images
Ships images to client

Implementation uses Charm++ parallel
runtime

Different phases all run at once
Overlaps everything, to avoid synchronization
Much easier in Charm than in MPI

Geometry represented by efficient migrateable
objects called array elements [Lawlor and Kale 02]

Geometry rendered in priority order
Create/destroy array elements as geometry is
split/merged

47

Architecture Analysis

B Delivered bandwidth (e.g., 300Mpixels/s)

BR Rendering bandwidth per processor (e.g., 1Mpixels/s/cpu)

P Parallel speedup (e.g., 30 effective cpus)

R Number of frames impostors are reused (e.g., 10 reuses)

BN Network bandwidth (e.g., 60 Mbytes/s)

CN Network compression rate (e.g., 0.5 pixels/byte)

BC Client rendering bandwidth (e.g., 300Mpixels/s)

Benefit from
Parallelism

Benefit from
Impostors

48

Parallel Planned Work

49

Complicated, Dynamic Problem
Only a small fraction of
geometry visible & relevant

Behind viewer, covered up,
too far away...

Relevant geometry changes
as camera moves

50

Prioritized Load Balancing
Parallelism only provides a benefit if
problem speedup is good

Poor prioritization can destroy speedup
Speedup does not mean “all processors are busy”

• That’s easy, but work must be relevant
[Kale et al 93]

Must keep all processors and the network busy on
relevant work

Goal: generate most image improvement for least
effort
Priority for rendering or shipping impostor based on

Visible error in the current impostor (pixels)
Visible screen area (pixels)
Visual/perceptual “importance” (scaling factor)
Effort required to render or ship impostor (seconds)

All of these are estimates!

51

Graphics Planned Work

52

New Graphics Opportunities

Impostors cuts the rendering
bandwidth needed
Parallelism provides extra
rendering power
Together, these allow

Soft Shadows
Global Illumination
Procedural Detail Generation
Huge models

53

Quality: Soft Shadows
Extended light
sources cast fuzzy
shadows

E.g., the sun
Prior work

Ignore
fuzziness
Point sample
area source
New faster
methods
[Hasenfratz 03
survey]

54

Hard Shadows

Occluder

ShadowFully Lit

Point light source

Cross section of a
hard-shadow scene

55

Hard Shadows: Shadow Map

Occluder

ShadowFully Lit

Point light source

For each column,
store depth to
first occluder--
beyond that is in
shadow

56

Soft Shadows
Area light source

Occluder

UmbraPenumbraFully Lit

Cross section of a
soft-shadow scene

57

Penumbra Limit Map (new)
Area light source

Occluder

UmbraPenumbraFully Lit

Store two depths:
Relevant occluder
Penumbra limit

58

Penumbra Limit Map
Area light source

Occluder

How much
light here?

Store two depths:
Relevant occluder
Penumbra limit

59

Penumbra Limit Map
Area light source

Occluder

Store two depths:
Relevant occluder
Penumbra limit

How much
light here?

60

Penumbra Limit Map

61

Penumbra Limit Map

P

Z

L
A

Z
P

A
L
=

62

Penumbra Limit Map

P

Z

L
A

Z
P

2
1

2
1
+=

Fraction of
light source
visible

(exact)

63

64

Quality: Global Illumination
Light bounces between
objects (color bleeding)

Everything is a
distributed light source!

Prior work
Ignore extra light

“Flat” look
Radiosity
Photon Mapping
Irradiance volume
[Greger 98]
Spherical harmonic
transfer functions

65

Detail: Complicated Texture
World’s colors are complicated
But can be described by
simple programs

Randomness
Cellular generation
[Legakis & Dorsey & Gortler 01]

Texture state machine
[Zelinka & Garland 02]

Many are expensive to
compute per-pixel, but cheap
per-impostor

Multiscale noise:
O(octaves) for separate
pixels
O(1) for impostor pixels

66

Detail: Complicated Geometry
World’s shape is
complicated
But lots of
repetition
So use
subroutines to
capture
repetition

[Prusinkiewicz,
Hart]

67

Demo in 3D

[Lawlor and Hart 03]

68

Scale: Kilometers
World is really big

Modeling it by
hand is painful!

But databases exist
USGS Elevation
GIS Maps
Aerial photos

So extract detail
from existing
sources

Leverage huge
prior work

Gives reality, which
is useful

69

Conetracing
[Amanatides 84]

70

Analytical
Atmosphere
Model
[Musgrave 93]

71

Conclusions

Parallel Impostors
Benefit from parallelism and
benefit from impostors are
multiplied together

Enables quantum leap in
rendering detail and accuracy

Detail: procedural texture and
geometry, large-scale worlds
Accuracy: antialiasing, soft
shadows, motion blur

	Impostors for Interactive Parallel Computer Graphics
	Overview
	Thesis Statement
	Importance of Computer Graphics
	
	Impostors
	Graphics Cards
	Graphics Card Performance
	Graphics Card: Usable Fill Rate
	Impostors Technique
	Impostors: Example
	Impostors: Example
	Impostors : Example
	Updating: Impostor Reuse
	Impostors Challenges
	
	Rendering Quality: Antialiasing
	Antialiased Impostors
	Antialiased Impostor Challenges
	Rendering Quality: Motion Blur
	Normal Motion Blur
	Normal Motion Blur
	Normal Motion Blur
	Normal Motion Blur
	Normal Motion Blur
	Normal Motion Blur
	Normal Motion Blur
	Normal Motion Blur
	Normal Motion Blur
	Fast Exponentiation Blur
	Fast Exponentiation Blur
	Fast Exponentiation Blur
	Fast Exponentiation Blur
	Fast Exponentiation Blur
	Impostors Research Summary
	
	Parallel Rendering
	Interactive Parallel Rendering
	Interactive Parallel Rendering
	Interactive Parallel Rendering
	Interactive Parallel Rendering
	
	Parallel Impostors Technique
	Client/Server Architecture
	Client Architecture
	Server Architecture
	Architecture Analysis
	
	Complicated, Dynamic Problem
	Prioritized Load Balancing
	
	New Graphics Opportunities
	Quality: Soft Shadows
	Hard Shadows
	Hard Shadows: Shadow Map
	Soft Shadows
	Penumbra Limit Map (new)
	Penumbra Limit Map
	Penumbra Limit Map
	Penumbra Limit Map
	Penumbra Limit Map
	Penumbra Limit Map
	
	Quality: Global Illumination
	Detail: Complicated Texture
	Detail: Complicated Geometry
	Demo in 3D
	Scale: Kilometers
	Conetracing
	AnalyticalAtmosphere Model
	Conclusions

