
1

1

Impostors for Interactive
Parallel Computer Graphics

Orion Sky Lawlor
olawlor@acm.org

2004/11/29

http://charm.cs.uiuc .edu/users/olawlor/academic/thesis/

8
2

Overview

n Case Studies
n Prior Work

nSerial Rendering and Problems
nParallel Rendering and Problems
n Impostors

n New Work
nParallel Impostors Technique
nBetter Rendering Enabled by

Parallel Impostors

n Conclusions
3

Selection of Case Studies
n Current state of the art hardware and

techniques can handle simple small smooth
surfaces well
n Small in both meters and bytes
n Smooth; low in geometric complexity

• But possibly high in (theoretical) polygon count

n Simple lighting
n Simple aliased point-sampled geometry

n Large, complex geometry not handled well
n Large in bytes and meters
n Geometric complexity
n Rendering fidelity
n Rendering complexity

4

Large Particle Dataset

n Computational
Cosmology
Dataset

n Large size
n50M particles
n20 bytes/particle
n=> 1 GB of data

5

Campus Dataset
n Large virtual world
n Built on a terrain model
n Complex rendering

nLight, shadow, geometric detail

6

Prior Approaches
and Unsolved Problems

2

7

Approach #1:
Just use a good graphics card!

8

Approach #1: Serial Rendering

n Draws only polygons,
lines, and points

n Supports image texture
mapping, transparent
blending, primitive
lightingnVidia

GeForce 6800

n Graphics cards are fast, right?
n So just render everything on the graphics card

n Exponentially Increasing Performance

n Consumer hardware vertex processing (1999)

n Programmable hardware pixel shaders (2001)

n Hardware floating-point pixel processing (2003)

n Per-pixel branching, looping, reads/writes (2005)

9

Graphics Card Performance

t total time to draw triangle (seconds)

α triangle setup time (about 50ns/triangle)

β pixel rendering time (about 1ns/pixel)

s area of triangle (pixels)

r rows in triangle

γ pixel cost per row (about 3 pixels/row)

Triangle Setup
Projection, lighting, clipping, ...

Pixel Rendering
Texturing, blending

!

10

Graphics Card: Usable Fill Rate

NVIDIA GeForce 3

Small
triangles

Large
triangles

11

Smooth vs Complex Surfaces
n Smooth Surfaces

n Polygons/patches
n Continuous, well-

defined surface
n Lots of occlusion
n Mesh simplification

[Garland 97]
n Can sometimes be

made fillrate limited

n Complex Surfaces
n Particles/splats
n All discontinuity; no

well-defined surface
n Not much occlusion
n Lazy surface

expansion [Hart 93]
n Never fillrate limited

12

Serial Rendering Drawbacks
n Graphics cards are fast

nBut not at rendering lots of tiny
geometry:
• 50K polygons/frame OK
• 50M pixels/frame OK
• 50M polygons/frame not OK

n Problems with complex
geometry do not utilize current
graphics hardware well

n The techniques we will describe
can improve performance for
geometry-limited problems

3

13

Approach #2:
Just use a parallel machine!

14

Approach #2: Parallel Rendering
n Parallel Machines are fast, right?

n Scale up to handle huge datasets
n Render lots of geometry simultaneously
n Send resulting images to client machine

n Tons of raytracers [John Stone’s Tachyon],
radiosity solvers [Stuttard 95], volume
visualization [Lacroute 96], etc

n “Write an MPI raytracer” is a homework
assignment

n Movie visual effects studios use frame-
parallel offline rendering (“render farm”)

n CSAR Rocketeer Apollo/Houston: frame
parallel

n Offline rendering basically a solved problem
15

Parallel Rendering Advantages
n Multiple processors can render

geometry simultaneously

n Achieved rendering speedup for large
particle dataset

n Can store huge datasets in memory
n Ignores cost of shipping images to

client

48 nodes of Hal cluster: 2 - way 550MHz Pentium III nodes connected with fast ethernet

16

Parallel Rendering Disadvantage

Parallel Machine Desktop Machine

Display

10 MB/s
Fast Ethernet

10 GB/s
Graphics Card
Memory

n Link to client is too slow!

Cannot ship
frames to
client at full
framerate/ full
resolution

WAY TOO SLOW!

17

Parallel Rendering Bottom Line
n Conventional parallel rendering

works great offline
n But not for interactive rendering

n Link to client has inadequate bandwidth
• Can’t send whole screen every frame

n System has zero latency tolerance
• Client has nothing to do but wait for next

frame
• If parallel machine hiccups, client drops

frames

n The techniques we will describe can
improve parallel rendering
bandwidth usage and provide latency
tolerance 18

Parallel Rendering in Practice
n Humphreyset al’s Chromium (aka Stanford’s WireGL)

n Binary-compatible OpenGL shared library
n Routes OpenGL commands across processors efficiently
n Flexible routing--arbitrary processing possible
n Typical usage: parallel geometry generation, screen-

space divided parallel rendering
n Big limitation: screen image reassembly bandwidth

n Need multi- pipe custom image assembly hardware on
front end

[Humphreys et al 02]

$$$!
$!

4

19

Unconventional Parallel Rendering

n Greg Ward’s “ray cache”
n Parallel Radiance server

renders and sends bundles
of rays to client

n Client interpolates
available nearby rays to
form image

[Mark 99]

[Ward 99]

n Bill Mark’s post-render
warping
n Parallel server sends every

N’th frame to client
n Client interpolates

remaining frames by
warping server frames
according to depth

20

Impostors

Fundamentals
Prior Work

21

Impostors
n Replace 3D geometry

with a 2D image
n Image an “impostor”

n 2D image fools viewer
into thinking 3D
geometry is still there

n Prior work
n Pompeii murals
n Trompe l’oeil (“trick of

the eye”) painting style
n Theater/movie

backdrops

n Main Limitation
n No parallax-- must

update impostor as
view changes

[Harnett 1886]

22

Impostors : Idea

Camera

Impostor

Geometry

23

Impostor Reuse
n We don’t need to redraw the impostors every frame

n If we did, impostors wouldn’t help!
n Can reuse impostors from frame to frame

n Can reuse forever under camera rotation
n Far away or flat impostors can be reused many

times
n Assuming reasonable camera motion rate

Number of frames impostor can be reused, for various depth ranges (columns) and distances (rows)

24

Impostors for Complex Scenes

n Use different
impostors for
different objects
in scene
nGet some parallax

even without
updating

n Number of
impostors can
depend on
viewpoint

5

25

Parallel Impostors

Our Proposed Solution

26

Parallel Impostors Technique
n Key observation: impostor images

don’t depend on one another
n So render impostors in parallel!

n Uses the speed and memory of the
parallel machine

• Fine grained-- lots of potential parallelism
n Geometry is partitioned by impostors

• No “shared model” assumption

n Reassemble world on serial client
n Uses rendering bandwidth of client

graphics card
n Impostor reuse cuts required network

bandwidth to client
• Only update images when necessary

n Impostors provide latency tolerance 27

Client/Server Architecture

n Parallel machine can be anywhere on network
n Keeps the problem geometry
n Renders and ships new impostors as needed

n Impostors shipped using TCP/IP sockets
n CCS & PUP protocol [Jyothi and Lawlor 04]
n Works over NAT/firewalled networks

n Client sits on user’s desk
n Sends server new viewpoints
n Receives and displays new impostors

28

Client Architecture
n Latency tolerance: client never waits for server

n Displays existing impostors at fixed framerate
n Even if they’re out of date

n Prefers spatial error (due to out of date impostor) to
temporal error (due to dropped frames)

n Implementation uses OpenGL for display
n Two separate kernel threads for network handling

29

Server Architecture
n Server accepts a new viewpoint from client
n Decides which impostors to render
n Renders impostors in parallel
n Collects finished impostor images
n Ships images to client

n Implementation uses Charm++ parallel
runtime
n Different phases all run at once

n Overlaps everything, to avoid synchronization
n Trivial in Charm; virtually impossible in MPI

n Geometry represented by efficient migrateable
objects called array elements [Lawlor and Kale 02]

n Geometry rendered in priority order
n Create/destroy array elements as impostor

geometry is split/merged
30

Architecture Analysis

B Delivered bandwidth (e.g., 300Mpixels/s)

BR Rendering bandwidth per processor (e.g., 1Mpixels/s/cpu)

P Parallel speedup (e.g., 30 effective cpus)

R Number of frames impostors are reused (e.g., 10 reuses)

BN Network bandwidth (e.g., 60 Mbytes/s)

CN Network compression rate (e.g., 0.5 pixels/byte)

BC Client rendering bandwidth (e.g., 300Mpixels/s)

Benefit from
Parallelism

Benefit from
Impostors

6

31

Parallel Impostors Examples

32

Parallel Particle Example
n Large particle dataset

n Decomposed using an octree

n Each octree leaf is:
n Responsible for a small subset of the

particles
n Represented on server by one parallel

array element
n Rendered into an impostor by its array

element
• When the old impostor cannot be reused

n Drawn on client as a separate impostor
n Able to migrate between processors for

load balance
33

Parallel Particle Load Balancing
n Array elements can migrate between

processors [Lawlor 03] for load balance
n Integrated with Charm++ automated load

measurement and balancing system

After BalancingBefore Balancing Balancing

34

Parallel Impostors Performance
n Parallel Impostors has high

framerate and low L2 error

n Conventional screen shipping has
low framerate and high L2 error

48 nodes of Hal cluster: 2 - way 550MHz Pentium III nodes connected with fast ethernet

35

Parallel Campus Example: Server

n Large terrain model decorated
with geometry

n For example, each tree is
nRepresented by one array element
nRendered by that array element

• Only when onscreen and
• Only when old impostor cannot be

reused (based on quality criteria)

nAble to migrate between processors
for load balance

36

Parallel Campus Example: Server
n Terrain ground texture is a

dynamic quadtree
n Each quadtree leaf

nRepresents one patch of ground
nStores outlines of sidewalk, roads,

grass, brick, etc. on ground
n Is represented by one array element

• Using array element bitvector indexing

nRenders an impostor ground texture
for client as needed

nDivides into children if higher
resolution is needed
• Creating new array elements

7

37

Parallel Campus Example: Client

n Client traverses terrain model
decorated with impostors
nDraws terrain and impostors in

back-to-front order
nDoes not expand offscreen parts of

model (checks bounds at each step)

n Client can always draw some
approximation of scene
nLatency (and latency variation)

hiding

38

New Features Enabled
by Parallel Impostors

39

Parallel Impostors Enables...

n Only reason to do any of this is
to make new things possible

n Showed how very large scenes
can now be rendered
n1 GB particle dataset

n Can now also do better
rendering
nFully antialiased geometry
nMore accurate lighting
nBigger more realistic databases

40

Antialiasing Impostors
Antialiasing Textures
Antialiasing Geometry

41

Antialiasing Summary

n Textures are easy to antialias
nHardware can do it easily

n Geometry is harder to antialias
nHardware can’t do it easily today

n Impostors turn geometry into
texture, but still must antialias
geometry
nCan use any existing antialiasing

method

42

Aliasing: The Problem
Point sampling leads

to “aliasing ”

Tiny sub -pixel
features show up
(alias) as noise
or large features

The texture on this
infinite plane is
sampled using
the nearest pixel

8

43

Texture Antialiasing via Mipmaps
Mipmapping

[Williams 83]
keeps a pyramid
of coarser
images, and
selects a coarse
enough image to
eliminate aliases

This coarsening
works, but
causes excess
blurring on tilted
surfaces

Mipmapping is
implemented on
all modern
graphics
hardware

44

Geometry Antialiasing
n Like texture pixels, objects can

cover only part of a pixel
n E.g., for tiny objects
n Or along object boundaries

n Prior Work:
n Ignore partial coverage and

point sample (standard!)
n Oversample and average

n Graphics hardware: FSAA
n Not theoretically correct; close

n Random point samples
n [Cook, Porter, Carpenter 84]
n Needs a lot of samples:

n Use analytic technique
n Trapezoids
n Circles [Amanatides 84]
n Polynomial splines [McCool 95]
n Procedures [Carr & Hart 99]

Antialiased
filtering

Aliased
point samples

n

σσ ='

45

Geometry Antialiasing via Texture
n Texture map filtering is mature

n Very fast on graphics hardware
n Bilinear interpolation for nearby

textures
n Mipmaps for distant textures
n Anisotropic filtering becoming

available
n Works well with alpha channel

transparency
[Haeberli & Segal 93]

n Impostors let us use texture
map filtering on geometry
n Antialiased edges
n Mipmapped distant geometry
n Substantial improvement over

ordinary polygon rendering

Antialiased
Impostor

46

Antialiased Impostor Challenges
n Must generate antialiased

impostors to start with
n Just pushes antialiasing up one

level
n Can use any antialiasing

technique. We use:
n Trapezoid-based integration
n Blended splats

n Must render with transparency
n Not compatible with Z-buffer
n Painter’s algorithm:

n Draw from back-to-front
n A radix sort works well
n For terrain, can avoid sort

by traversing terrain
properly

47

Ground Texture Antialiasing
n Campus example, ground as simple texture
n Mipmaps are fast, but cause excessive blurring

48

Ground Texture Antialiasing
n Ground texture drawn from vector outlines using

analytically antialiased trapezoids
n Chooses ground resolution to match screen
n Achieves high-quality anisotropic antialiasing

9

49

Splat Aliasing
n Aliased splat geometry: lines break up and wobble

50

Splat Antialiasing
n Antialiased splats: lines stay smooth and clean

51

Penumbra Limit Map
for Soft Shadows

52

Quality: Soft Shadows
n Extended light

sources cast fuzzy
shadows
n E.g., the sun

n Prior work
n Ignore fuzziness
n Point sample area

source
n New faster

methods
[Hasenfratz 03
survey]

n New method based
on a discrete, easy-
to-parallelize shadow
map

53

P

Z

L
A

Z
P

2
1

2
1

+=
Fraction of

light
source
visible

(exact)

Penumbra Limit Shadows
n Main Contribution: new method physically correct
n New method very interpolation-friendly

n Penumbra limit values (green) are planar

54

10

55

Large Models

56

Scale: Kilometers
n World is really big

n Modeling it by
hand is painful!

n But databases exist
n USGS Elevation
n GIS Maps
n Aerial photos

n So extract detail
from existing
sources
n Leverage existing

manual labor
n Gives reality, which

is useful 57

Practical Difficulties
n Map projections

n UTM, ILCS
n Curvature of Earth

n Undocumented and
bizarre formats

n Formats designed
for 2D; need 3D
n Extrusion

n Inconsistencies
n 1997 vs 2004

n Still much easier
than by hand...

58

Terrain Traversal

n Cannot simply dump all terrain
geometry into graphics card
nToo many polygons

n Must simplify terrain geometry
during traversal
nBut must preserve fidelity
nView-dependent level of detail

n Standard method [Lindstrom 03]
nWith a few minor improvements

59

Terrain Decomposition
n Terrain level- of-detail: expand until screen error

drops below threshold

60

Terrain Decomposition
n Lindstrom terrain: split quads at even/odd levels

11

61

Terrain Decomposition
n Optimized terrain: split quads along lower- error axis

62

Terrain Painter’s Algorithm

n Conventional Z-buffer terrain
can be extracted in arbitrary
order

n But painter’s algorithm requires
strict back-to-front rendering
nSo recursively traverse terrain in

back-to-front order
nExpand children in back-to-front

order

63

Terrain Painter’s Algorithm
n Extreme Wideangle shot of Denali Nat’l Park

64

Terrain Painter’s Algorithm
n Colored by traversal order

65

Roof Extrusion
n Only have building outlines, not details of roof

topology or even height
n Must synthesize plausible roof shape for

hundreds of buildings
n Building outlines contain lots of colinearity and

other degeneracies!

66

Roof Extrusion
n New (?) triangulation based on Voronoi diagram

n Triangulates medial axis and outline
n Plausible approximation of real roofs

n Medial axis approximately follows ridgeline
n Special “cell edges” run downslope, can highlight

to draw water channels

12

67

Roof Extrusion
n Procedure is fast and robust

n Built on Fortune’s sweepline algorithm
n Works for all campus buildings without problems
n Simplify resulting roof mesh using quadric

simplification [Garland 97]

68

Contributions and
Conclusions

69

Contributions: Parallel Computing
n Charm++ Array Manager

n Parallel migratable objects support
• Scalable Creation, deletion, messaging, migration
• Used here to represent chunk of geometry for impostor

rendering
n Collectives with migration [Lawlor 03]

• Used here to distribute new viewpoints to impostors

n Charm++ PUP Framework
n Introspection for C++ objects
n Complex cross-platform communication protocols made

easy [Jyothi and Lawlor 04]
n Used here for impostors:

• To/from disk files (scene I/O)
• To client from server
• Between processors of parallel machine for load balance

n CCS Protocol
n Fast, portable network connection to parallel machines

[Jyothi and Lawlor 04]
n Works even with both ends behind firewalls or NAT
n Used here to connect parallel impostor server to client

70

Contributions: Parallel Rendering

n Parallel Impostors technique for
nAdditional rendering power

• More geometry per frame
• Better rendering algorithms
• Quality antialiasing

n Improved bandwidth usage
• Impostor reuse cuts required

bandwidth

n Increased latency tolerance
• Client can always draw next frame

using existing impostors
• No dropped frames from network

glitches 71

Contributions: Quality Rendering
n Techniques for

nAntialiased geometry
• Analytic filtering and smooth splats

nQuality lighting
• Soft shadows via Penumbra Limit Maps
• Global illumination via Impostor GI

nLarge worlds
• GIS and Terrain tweaks

nProcedural geometry generation
• IFS Bounding [Lawlor and Hart 03]

n Cost of these techniques is
affordable with Parallel
Impostors 72

Total Lines of Code
n Conservative total of 63K lines of C++ code (with some C)

n Parallel -Rendering specific: 16K lines
n 9K Rendering and IFS support (for campus model)
n 3K LiveViz3d server library (parallel impostors)
n 1K LiveViz2d server library (screen shipping)
n 1K Campus server code
n 1K Campus client library
n 1K Campus building assembly

n Graphics Infrastructure: 31K lines
n 10K 2Dantialiased rendering library
n 8K Matrix, vector, and other math
n 6K PostScript interpreter
n 3K Terrain system
n 3K Geospatial/map libraries
n 1K Raytracer library

n Parallel Infrastructure: 16K+ lines (CVS: 47K)
n 4K Array Manager
n 4K Common data structures
n 3K PUP Framework
n 2.5K CCS Protocol

nUnrelated UIUC code: 25K lines

n7K FEM Framework

n4K CSAR Remeshing

n3K NetFEM client and server

n3K Data transfer library

n2.5K Collision library

n2K Multiblock framework

n1.5K TCharm library

n1.5K CSAR Makeflo

